1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
/*!
This crate provides a library for computing a [Delaunay triangulation][1] from a set of points
using the [Bowyer–Watson algorithm][2].

While performance shouldn't be terrible, there is definite room for improvement.

# Usage
```rust
extern crate delaunay2d;
```

# Example: Delaunay triangulation
```rust
use delaunay2d::{Delaunay2D, Triangle};
let mut dt = Delaunay2D::new((0., 0.), 9999.);

dt.add_point((13., 12.));
dt.add_point((18., 19.));
dt.add_point((21., 5.));
dt.add_point((37., -3.));

let mut triangles = dt.export_triangles();
triangles.sort_by_key(|t| (t.0, t.1, t.2));
assert_eq!(vec![Triangle(2,1,0), Triangle(3, 1, 2)], triangles);
```
# Example: Voronoi regions
```rust
use delaunay2d::{Delaunay2D};
let mut dt = Delaunay2D::new((0., 0.), 9999.);

dt.add_point((13., 12.));
dt.add_point((18., 19.));
dt.add_point((21., 5.));
dt.add_point((37., -3.));

let (points, mut regions) = dt.export_voronoi_regions();
regions.sort();
assert_eq!(10, points.len());
assert_eq!(4, regions.len());
```

[1]: https://en.wikipedia.org/wiki/Delaunay_triangulation
[2]: https://en.wikipedia.org/wiki/Bowyer%E2%80%93Watson_algorithm
*/

use std::ops::Add;
use std::ops::Sub;
use std::collections::HashMap;
use std::collections::HashSet;

#[inline]
fn next_idx(n: usize, m: usize) -> usize {
    if n < (m - 1) { n + 1 } else { 0 }
}

#[inline]
fn prev_idx(n: usize, m: usize) -> usize {
    if n == 0 { m - 1 } else { n - 1 }
}

/// Represents an (X, Y) coordinate
#[derive(Debug, Clone, Copy, PartialEq)]
struct Point {
    pub x: f64,
    pub y: f64,
}

impl Point {
    pub fn new(x: f64, y: f64) -> Point {
        Point { x: x, y: y }
    }
    fn mag(&self) -> f64 {
        self.x * self.x + self.y * self.y
    }
}

impl Add for Point {
    type Output = Point;
    fn add(self, other: Point) -> Point {
        Point {
            x: self.x + other.x,
            y: self.y + other.y,
        }
    }
}

impl Sub for Point {
    type Output = Point;
    fn sub(self, other: Point) -> Point {
        Point {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

/// The triangles opposite to each vertex, if any.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct TNeighbours(pub Option<Triangle>, pub Option<Triangle>, pub Option<Triangle>);

impl TNeighbours {
    fn get(&self, n: usize) -> Option<Triangle> {
        match n {
            0 => self.0,
            1 => self.1,
            2 => self.2,
            _ => None,
        }
    }
    fn get_ccw_op(&self, t: Triangle) -> usize {
        match *self {
            TNeighbours(Some(x), _, _) if x == t => 0,
            TNeighbours(_, Some(x), _) if x == t => 1,
            TNeighbours(_, _, Some(x)) if x == t => 2,
            _ => panic!("At the Disco"),
        }
    }

    fn update_with_neighbour(self, e0: usize, e1: usize, t: Triangle) -> TNeighbours {
        match self {
            TNeighbours(Some(x), b, c) if x.has_edges(e0, e1) => TNeighbours(Some(t), b, c),
            TNeighbours(a, Some(x), c) if x.has_edges(e0, e1) => TNeighbours(a, Some(t), c),
            TNeighbours(a, b, Some(x)) if x.has_edges(e0, e1) => TNeighbours(a, b, Some(t)),
            _ => self,
        }
    }
    fn remove_bounding_triangles(&self) -> TNeighbours {
        TNeighbours(self.0.and_then(|t| if t.is_bounding_triangle() {
                        None
                    } else {
                        Some(t)
                    }),
                    self.1.and_then(|t| if t.is_bounding_triangle() {
                        None
                    } else {
                        Some(t)
                    }),
                    self.2.and_then(|t| if t.is_bounding_triangle() {
                        None
                    } else {
                        Some(t)
                    }))
    }

    fn munge_indices(&self) -> TNeighbours {
        TNeighbours(self.0.map(|t| t.munge_indices()),
                    self.1.map(|t| t.munge_indices()),
                    self.2.map(|t| t.munge_indices()))
    }
}

#[derive(Debug)]
pub struct Delaunay2D {
    coords: Vec<Point>,
    triangles: HashMap<Triangle, TNeighbours>,
    circles: HashMap<Triangle, (Point, f64)>,
}

/// A triangle, represented as indices into a list of points
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub struct Triangle(pub usize, pub usize, pub usize);

impl Triangle {
    fn get(&self, n: usize) -> usize {
        match n {
            0 => self.0,
            1 => self.1,
            2 => self.2,
            _ => panic!("Triangles only have three sides"),
        }
    }

    fn has_edges(&self, e0: usize, e1: usize) -> bool {
        (self.0 == e0 || self.1 == e0 || self.2 == e0) &&
        (self.0 == e1 || self.1 == e1 || self.2 == e1)
    }

    fn is_bounding_triangle(&self) -> bool {
        self.0 <= 3 || self.1 <= 3 || self.2 <= 3
    }

    fn munge_indices(&self) -> Self {
        Triangle(self.0 - 4, self.1 - 4, self.2 - 4)
    }
    fn demunge_indices(&self) -> Self {
        Triangle(self.0 + 4, self.1 + 4, self.2 + 4)
    }
}

impl Delaunay2D {
    /// Builds a new Delaunay triangulator.
    /// All points added to the triangulator must fall within the bounding box
    /// centered at `center` and extending in `radius` in each direction
    pub fn new(center: (f64, f64), radius: f64) -> Delaunay2D {
        let center = Point::new(center.0, center.1);
        let coords = vec![Point {
                              x: center.x - radius,
                              y: center.y - radius,
                          },
                          Point {
                              x: center.x + radius,
                              y: center.y - radius,
                          },
                          Point {
                              x: center.x + radius,
                              y: center.y + radius,
                          },
                          Point {
                              x: center.x - radius,
                              y: center.y + radius,
                          }];

        let mut triangles = HashMap::new();
        let mut circles = HashMap::new();
        let t1 = Triangle(0, 1, 3);
        let t2 = Triangle(2, 3, 1);
        triangles.insert(t1, TNeighbours(Some(t2), None, None));
        triangles.insert(t2, TNeighbours(Some(t1), None, None));
        circles.insert(t1, t1.circumcenter(&coords));
        circles.insert(t2, t2.circumcenter(&coords));
        Delaunay2D {
            coords: coords,
            triangles: triangles,
            circles: circles,
        }
    }

    fn in_circle_fast(&self, tri: Triangle, p: Point) -> bool {
        let (center, radius) = self.circles[&tri];
        (center - p).mag() <= radius
    }

    // fn in_circle_robust(&self, tri: Triangle, p: Point) -> bool {
    // 	let (a, b, c) = (self.coords[tri.0] - p, self.coords[tri.1] - p, self.coords[tri.2] - p);
    // 	let a_mag = a.mag();
    // 	let b_mag = b.mag();
    // 	let c_mag = c.mag();
    // 	let det = a.x * (b.y * c_mag - b_mag * c.y)
    // 	        + a.y * (b_mag * c.x - c_mag * b.x)
    // 	        + a_mag * (b.x * c.y - c.x * b.y);

    // 	det > 0f64
    // }

    /// Adds a point to the triangulation.
    #[allow(while_true)]
    pub fn add_point(&mut self, p: (f64, f64)) {
        let p = Point::new(p.0, p.1);
        let idx = self.coords.len();
        self.coords.push(p);

        let bad_triangles: HashSet<_> =
            self.triangles.keys().cloned().filter(|&t| self.in_circle_fast(t, p)).collect();

        let mut boundary: Vec<(usize, usize, Option<Triangle>)> = vec![];
        let mut t: Triangle = *bad_triangles.iter().next().unwrap();
        let mut edge = 0;

        while true {
            // Check if edge of triangle T is on the boundary...
            // if opposite triangle of this edge is external to the list
            let tri_op = self.triangles[&t].get(edge);
            if tri_op.is_none() || !bad_triangles.contains(&tri_op.unwrap()) {

                // Insert edge and external triangle into boundary list
                boundary.push((t.get(next_idx(edge, 3)), t.get(prev_idx(edge, 3)), tri_op));
                // Move to next CCW edge in this triangle
                edge = next_idx(edge, 3);
                if boundary[0].0 == boundary[boundary.len() - 1].1 {
                    break;
                }
            } else if let Some(tri_op) = tri_op {
                // Move to next CCW edge in opposite triangle
                let ccw_op = self.triangles[&tri_op].get_ccw_op(t);
                //edge = (self.triangles[tri_op].index(T) + 1) % 3
                edge = next_idx(ccw_op, 3);
                t = tri_op;
            }
        }
        for t in bad_triangles {
            self.triangles.remove(&t);
            self.circles.remove(&t);
        }
        // Retriangle the hole left by bad_triangles
        let mut new_triangles: Vec<Triangle> = vec![];
        for (e0, e1, tri_op) in boundary {
            // Create a new triangle using point p and edge extremes
            let t = Triangle(idx, e0, e1);
            // Store circumcenter and circumradius of the triangle
            self.circles.insert(t, t.circumcenter(&self.coords));
            // Set opposite triangle of the edge as neighbour of T
            self.triangles.insert(t, TNeighbours(tri_op, None, None));

            // Try to set T as neighbour of the opposite triangle
            // search the neighbour of tri_op that use edge (e1, e0)
            if let Some(tri_op) = tri_op {
                let updated_tstruct = self.triangles[&tri_op].update_with_neighbour(e0, e1, t);
                self.triangles.insert(tri_op, updated_tstruct);
            }

            // Add triangle to a temporal list
            new_triangles.push(t);

        }

        // Link the new triangles each another
        let n = new_triangles.len();
        for (i, t) in new_triangles.iter().enumerate() {
            let tstruct = self.triangles[t];
            let first_triangle = new_triangles[next_idx(i, n)];
            let second_triangle = new_triangles[prev_idx(i, n)];
            let new_tstruct = TNeighbours(tstruct.0, Some(first_triangle), Some(second_triangle));
            self.triangles.insert(*t, new_tstruct);
        }
    }

    /// Returns the triangles generated by the triangulation.
    /// Each triangle is a counter-clockwise triple of coordinate indices
    pub fn export_triangles(&self) -> Vec<Triangle> {
        self.triangles
            .keys()
            .filter(|t| t.0 > 3 && t.1 > 3 && t.2 > 3)
            .cloned()
            .map(|t| t.munge_indices())
            .collect()
    }

    /// Returns the neighbours of a given triangle.
    /// The first neighbour is adjacent to the edge *opposite* the first vertex, etc.
    pub fn get_adjacent(&self, t: &Triangle) -> Option<TNeighbours> {
        // Because we munge outgoing triangles, we need to demunge them to look them up
        let demunged = t.demunge_indices();
        self.triangles.get(&demunged).map(|t| t.remove_bounding_triangles().munge_indices())
    }

    /// Returns the list of points added to the triangulation.
    pub fn export_points(&self) -> Vec<(f64, f64)> {
        self.coords.iter().skip(4).map(|p| (p.x, p.y)).collect()
    }

    /// Returns the vertices of the Voronoi regions, and the indices of vertices forming
    /// each region.
    pub fn export_voronoi_regions(&self) -> (Vec<(f64, f64)>, Vec<Vec<usize>>) {
        let mut use_vertex =
            (0..self.coords.len()).map(|_| -> Vec<Triangle> { vec![] }).collect::<Vec<_>>();
        let mut index: HashMap<Triangle, usize> = HashMap::new();
        let mut vor_coors = vec![];
        for (tidx, t) in self.triangles.keys().enumerate() {
            let Triangle(a, b, c) = *t;
            let circle_center = self.circles[t].0;
            vor_coors.push((circle_center.x, circle_center.y));
            // Insert triangle, rotating it so the key is the "last" vertex
            use_vertex[a].push(Triangle(b, c, a));
            use_vertex[b].push(Triangle(c, a, b));
            use_vertex[c].push(Triangle(a, b, c));
            // Set tidx as the index to use with this triangles
            index.insert(Triangle(b, c, a), tidx);
            index.insert(Triangle(c, a, b), tidx);
            index.insert(Triangle(a, b, c), tidx);
        }
        // init regions per coordinate dictionary
        let mut regions = vec![];
        // Sort each region in a coherent order, and substitude each triangle
        // by its index

        for vertex in use_vertex[4..].iter() {
            let mut v = vertex[0].0;
            let mut r = vec![];
            for _ in 0..vertex.len() {
                // Search the triangle beginning with vertex v
                let t = vertex.iter().find(|&t| t.0 == v).unwrap();
                r.push(t.1); // Add the index of this triangle to region
                v = t.1; // Choose the next vertex to search
            }
            regions.push(r); // Store region.
        }
        (vor_coors, regions)
    }
}

impl Triangle {
    fn circumcenter(&self, coords: &[Point]) -> (Point, f64) {

        let (a, b, c) = (coords[self.0], coords[self.1], coords[self.2]);
        /* Use coordinates relative to point `a' of the triangle. */
        let ba = b - a;
        let ca = c - a;
        // Squares of lengths of the edges incident to `a`
        let ba_length = ba.mag();
        let ca_length = ca.mag();

        // Living dangerously
        let denominator = 0.5 / (ba.x * ca.y - ba.y * ca.x);

        let xcirca = (ca.y * ba_length - ba.y * ca_length) * denominator;
        let ycirca = (ba.x * ca_length - ca.x * ba_length) * denominator;

        let a_relative_circumcenter = Point {
            x: xcirca,
            y: ycirca,
        };

        let r_squared = a_relative_circumcenter.mag();

        (a + a_relative_circumcenter, r_squared)
    }
}


#[cfg(test)]
mod tests {
    use Delaunay2D;
    use Triangle;
    use TNeighbours;
    #[test]
    fn it_works() {
        let mut delaunay = Delaunay2D::new((0., 0.), 9999.);
        delaunay.add_point((13., 12.));
        for &(t, tstruct) in [(Triangle(4, 0, 1),
                               TNeighbours(None,
                                           Some(Triangle(4, 1, 2)),
                                           Some(Triangle(4, 3, 0)))),
                              (Triangle(4, 1, 2),
                               TNeighbours(None,
                                           Some(Triangle(4, 2, 3)),
                                           Some(Triangle(4, 0, 1)))),
                              (Triangle(4, 3, 0),
                               TNeighbours(None,
                                           Some(Triangle(4, 0, 1)),
                                           Some(Triangle(4, 2, 3)))),
                              (Triangle(4, 2, 3),
                               TNeighbours(None,
                                           Some(Triangle(4, 3, 0)),
                                           Some(Triangle(4, 1, 2))))]
            .into_iter() {
            assert!(delaunay.triangles.contains_key(&t));
            let ts = delaunay.triangles[&t];
            assert_eq!(tstruct, ts);
        }

        delaunay.add_point((18., 19.));
        for &(t, tstruct) in [(Triangle(4, 0, 1),
                               TNeighbours(None,
                                           Some(Triangle(5, 4, 1)),
                                           Some(Triangle(4, 3, 0)))),
                              (Triangle(5, 2, 3),
                               TNeighbours(None,
                                           Some(Triangle(5, 3, 4)),
                                           Some(Triangle(5, 1, 2)))),
                              (Triangle(5, 1, 2),
                               TNeighbours(None,
                                           Some(Triangle(5, 2, 3)),
                                           Some(Triangle(5, 4, 1)))),
                              (Triangle(5, 3, 4),
                               TNeighbours(Some(Triangle(4, 3, 0)),
                                           Some(Triangle(5, 4, 1)),
                                           Some(Triangle(5, 2, 3)))),
                              (Triangle(5, 4, 1),
                               TNeighbours(Some(Triangle(4, 0, 1)),
                                           Some(Triangle(5, 1, 2)),
                                           Some(Triangle(5, 3, 4)))),
                              (Triangle(4, 3, 0),
                               TNeighbours(None,
                                           Some(Triangle(4, 0, 1)),
                                           Some(Triangle(5, 3, 4))))]
            .into_iter() {
            assert!(delaunay.triangles.contains_key(&t));
            let ts = delaunay.triangles[&t];
            assert_eq!(tstruct, ts);
        }

        delaunay.add_point((21., 5.));
        for &(t, tstruct) in [(Triangle(6, 2, 5),
                               TNeighbours(Some(Triangle(5, 2, 3)),
                                           Some(Triangle(6, 5, 4)),
                                           Some(Triangle(6, 1, 2)))),
                              (Triangle(5, 2, 3),
                               TNeighbours(None,
                                           Some(Triangle(5, 3, 4)),
                                           Some(Triangle(6, 2, 5)))),
                              (Triangle(5, 3, 4),
                               TNeighbours(Some(Triangle(4, 3, 0)),
                                           Some(Triangle(6, 5, 4)),
                                           Some(Triangle(5, 2, 3)))),
                              (Triangle(6, 5, 4),
                               TNeighbours(Some(Triangle(5, 3, 4)),
                                           Some(Triangle(6, 4, 0)),
                                           Some(Triangle(6, 2, 5)))),
                              (Triangle(6, 0, 1),
                               TNeighbours(None,
                                           Some(Triangle(6, 1, 2)),
                                           Some(Triangle(6, 4, 0)))),
                              (Triangle(4, 3, 0),
                               TNeighbours(None,
                                           Some(Triangle(6, 4, 0)),
                                           Some(Triangle(5, 3, 4)))),
                              (Triangle(6, 1, 2),
                               TNeighbours(None,
                                           Some(Triangle(6, 2, 5)),
                                           Some(Triangle(6, 0, 1)))),
                              (Triangle(6, 4, 0),
                               TNeighbours(Some(Triangle(4, 3, 0)),
                                           Some(Triangle(6, 0, 1)),
                                           Some(Triangle(6, 5, 4))))]
            .into_iter() {
            assert!(delaunay.triangles.contains_key(&t));
            let ts = delaunay.triangles[&t];
            assert_eq!(tstruct, ts);
        }


        delaunay.add_point((37., -3.));

        for &(t, tstruct) in [(Triangle(5, 2, 3),
                               TNeighbours(None,
                                           Some(Triangle(5, 3, 4)),
                                           Some(Triangle(7, 2, 5)))),
                              (Triangle(7, 1, 2),
                               TNeighbours(None,
                                           Some(Triangle(7, 2, 5)),
                                           Some(Triangle(7, 0, 1)))),
                              (Triangle(6, 4, 0),
                               TNeighbours(Some(Triangle(4, 3, 0)),
                                           Some(Triangle(7, 6, 0)),
                                           Some(Triangle(6, 5, 4)))),
                              (Triangle(7, 0, 1),
                               TNeighbours(None,
                                           Some(Triangle(7, 1, 2)),
                                           Some(Triangle(7, 6, 0)))),
                              (Triangle(7, 6, 0),
                               TNeighbours(Some(Triangle(6, 4, 0)),
                                           Some(Triangle(7, 0, 1)),
                                           Some(Triangle(7, 5, 6)))),
                              (Triangle(5, 3, 4),
                               TNeighbours(Some(Triangle(4, 3, 0)),
                                           Some(Triangle(6, 5, 4)),
                                           Some(Triangle(5, 2, 3)))),
                              (Triangle(6, 5, 4),
                               TNeighbours(Some(Triangle(5, 3, 4)),
                                           Some(Triangle(6, 4, 0)),
                                           Some(Triangle(7, 5, 6)))),
                              (Triangle(7, 5, 6),
                               TNeighbours(Some(Triangle(6, 5, 4)),
                                           Some(Triangle(7, 6, 0)),
                                           Some(Triangle(7, 2, 5)))),
                              (Triangle(4, 3, 0),
                               TNeighbours(None,
                                           Some(Triangle(6, 4, 0)),
                                           Some(Triangle(5, 3, 4)))),
                              (Triangle(7, 2, 5),
                               TNeighbours(Some(Triangle(5, 2, 3)),
                                           Some(Triangle(7, 5, 6)),
                                           Some(Triangle(7, 1, 2))))]
            .into_iter() {
            assert!(delaunay.triangles.contains_key(&t));
            let ts = delaunay.triangles[&t];
            assert_eq!(tstruct, ts);
        }
        assert_eq!(10, delaunay.triangles.len());

    }

    #[test]
    fn adjacent_triangles() {
        let mut delaunay = Delaunay2D::new((0., 0.), 100.);
        delaunay.add_point((1., 1.));
        delaunay.add_point((3., 1.));
        delaunay.add_point((1., 3.));
        let triangles = delaunay.export_triangles();
        assert_eq!(1, triangles.len());
        let t = triangles[0];
        assert_eq!(Some(TNeighbours(None, None, None)),
                   delaunay.get_adjacent(&t));
        assert_eq!(None, delaunay.get_adjacent(&Triangle(1, 2, 4)));

        delaunay.add_point((3., 3.));
        let mut triangles = delaunay.export_triangles();
        assert_eq!(2, triangles.len());
        triangles.sort_by_key(|t| (t.0, t.1, t.2));
        let t = triangles[0];
        assert_eq!(Triangle(3, 0, 1), t);
        assert_eq!(Some(TNeighbours(None, None, Some(Triangle(3, 2, 0)))),
                   delaunay.get_adjacent(&t));

        assert_eq!(None, delaunay.get_adjacent(&Triangle(1, 2, 4)));

    }
}