1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/*!
# Deku: Declarative binary reading and writing

Deriving a struct or enum with `DekuRead` and `DekuWrite` provides bit-level,
symmetric, serialization/deserialization implementations.

This allows the developer to focus on building and maintaining how the data is
represented and manipulated and not on redundant, error-prone, parsing/writing code.

This approach is especially useful when dealing with binary structures such as
TLVs or network protocols.

Under the hood, it makes use of the [bitvec](https://crates.io/crates/bitvec)
crate as the "Reader" and “Writer”

For documentation and examples on available `#[deku]` attributes and features,
see [attributes list](attributes)

For more examples, see the
[examples folder](https://github.com/sharksforarms/deku/tree/master/examples)!

## no_std

For use in `no_std` environments, `alloc` is the single feature which is required on deku.

# Example

Let's read big-endian data into a struct, with fields containing different sizes,
modify a value, and write it back

```rust
use deku::prelude::*;

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
#[deku(endian = "big")]
struct DekuTest {
    #[deku(bits = "4")]
    field_a: u8,
    #[deku(bits = "4")]
    field_b: u8,
    field_c: u16,
}

let data: Vec<u8> = vec![0b0110_1001, 0xBE, 0xEF];
let (_rest, mut val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest {
    field_a: 0b0110,
    field_b: 0b1001,
    field_c: 0xBEEF,
}, val);

val.field_c = 0xC0FE;

let data_out = val.to_bytes().unwrap();
assert_eq!(vec![0b0110_1001, 0xC0, 0xFE], data_out);
```

# Composing

Deku structs/enums can be composed as long as they implement DekuRead / DekuWrite traits

```rust
use deku::prelude::*;

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
struct DekuTest {
    header: DekuHeader,
    data: DekuData,
}

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
struct DekuHeader(u8);

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
struct DekuData(u16);

let data: Vec<u8> = vec![0xAA, 0xEF, 0xBE];
let (_rest, mut val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest {
    header: DekuHeader(0xAA),
    data: DekuData(0xBEEF),
}, val);

let data_out = val.to_bytes().unwrap();
assert_eq!(data, data_out);
```

# Vec

Vec<T> can be used in combination with the [count](attributes#count)
attribute (T must implement DekuRead/DekuWrite)

[bytes_read](attributes#bytes_read) or [bits_read](attributes#bits_read)
can also be used instead of `count` to read a specific size of each.


If the length of Vec changes, the original field specified in `count` will not get updated.
Calling `.update()` can be used to "update" the field!

```rust
use deku::prelude::*;

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
struct DekuTest {
    #[deku(update = "self.data.len()")]
    count: u8,
    #[deku(count = "count")]
    data: Vec<u8>,
}

let data: Vec<u8> = vec![0x02, 0xBE, 0xEF, 0xFF, 0xFF];
let (_rest, mut val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest {
    count: 0x02,
    data: vec![0xBE, 0xEF]
}, val);

let data_out = val.to_bytes().unwrap();
assert_eq!(vec![0x02, 0xBE, 0xEF], data_out);

// Pushing an element to data
val.data.push(0xAA);

assert_eq!(DekuTest {
    count: 0x02, // Note: this value has not changed
    data: vec![0xBE, 0xEF, 0xAA]
}, val);

let data_out = val.to_bytes().unwrap();
// Note: `count` is still 0x02 while 3 bytes got written
assert_eq!(vec![0x02, 0xBE, 0xEF, 0xAA], data_out);

// Use `update` to update `count`
val.update().unwrap();

assert_eq!(DekuTest {
    count: 0x03,
    data: vec![0xBE, 0xEF, 0xAA]
}, val);

```

# Enums

As enums can have multiple variants, each variant must have a way to match on
the incoming data.

First the "type" is read using the `type`, then is matched against the
variants given `id`. What happens after is the same as structs!

This is implemented with the [id](/attributes/index.html#id),
[id_pat](/attributes/index.html#id_pat) and
[type](attributes#type) attributes. See these for more examples.

If no `id` is specified, the variant will default to it's discriminant value.

If no variant can be matched, a [DekuError::Parse](crate::error::DekuError)
error will be returned.

Example:

```rust
use deku::prelude::*;

#[derive(Debug, PartialEq, DekuRead, DekuWrite)]
#[deku(type = "u8")]
enum DekuTest {
    #[deku(id = "0x01")]
    VariantA,
    #[deku(id = "0x02")]
    VariantB(u16),
}

let data: Vec<u8> = vec![0x01, 0x02, 0xEF, 0xBE];

let (rest, val) = DekuTest::from_bytes((data.as_ref(), 0)).unwrap();
assert_eq!(DekuTest::VariantA , val);

let (rest, val) = DekuTest::from_bytes(rest).unwrap();
assert_eq!(DekuTest::VariantB(0xBEEF) , val);
```

# Context

Child parsers can get access to the parent's parsed values using the `ctx` attribute

For more information see [ctx attribute](attributes#ctx)

Example:

```rust
use deku::prelude::*;

#[derive(DekuRead, DekuWrite)]
#[deku(ctx = "a: u8")]
struct Subtype {
    #[deku(map = "|b: u8| -> Result<_, DekuError> { Ok(b + a) }")]
    b: u8
}

#[derive(DekuRead, DekuWrite)]
struct Root {
    a: u8,
    #[deku(ctx = "*a")] // `a` is a reference
    sub: Subtype
}

let data: Vec<u8> = vec![0x01, 0x02];

let (rest, value) = Root::from_bytes((&data[..], 0)).unwrap();
assert_eq!(value.a, 0x01);
assert_eq!(value.sub.b, 0x01 + 0x02)
```

# Internal variables and previously read fields

Along similar lines to [Context](#context) variables, previously read variables
are exposed and can be referenced:

Example:

```rust
# use deku::prelude::*;
#[derive(DekuRead)]
struct DekuTest {
    num_items: u8,
    #[deku(count = "num_items")]
    items: Vec<u16>,
}
```

The following variables are internals which can be used in attributes accepting
tokens such as `reader`, `writer`, `map`, `count`, etc.

These are provided as a convenience to the user.

Always included:
- `deku::input: (&[u8], usize)` - The initial input byte slice and bit offset
(available when using [from_bytes](crate::DekuContainerRead::from_bytes))
- `deku::input_bits: &BitSlice<u8, Msb0>` - The initial input in bits
- `deku::rest: &BitSlice<u8, Msb0>` - Remaining bits to read
- `deku::output: &mut BitSlice<u8, Msb0>` - The output bit stream

Conditionally included if referenced:
- `deku::bit_offset: usize` - Current bit offset from the input
- `deku::byte_offset: usize` - Current byte offset from the input

Example:
```rust
# use deku::prelude::*;
#[derive(DekuRead)]
#[deku(ctx = "size: u32")]
pub struct EncodedString {
    encoding: u8,

    #[deku(count = "size as usize - deku::byte_offset")]
    data: Vec<u8>
}
```

*/
#![warn(missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]
#![allow(clippy::unusual_byte_groupings)]

#[cfg(feature = "alloc")]
extern crate alloc;

#[cfg(feature = "alloc")]
use alloc::vec::Vec;

/// re-export of bitvec
pub mod bitvec {
    pub use bitvec::prelude::*;
    pub use bitvec::view::BitView;
}

pub use deku_derive::*;

pub mod attributes;
pub mod ctx;
pub mod error;
mod impls;
pub mod prelude;

pub use crate::error::DekuError;

/// "Reader" trait: read bits and construct type
pub trait DekuRead<'a, Ctx = ()> {
    /// Read bits and construct type
    /// * **input** - Input as bits
    /// * **ctx** - A context required by context-sensitive reading. A unit type `()` means no context
    /// needed.
    ///
    /// Returns the remaining bits after parsing in addition to Self.
    fn read(
        input: &'a bitvec::BitSlice<u8, bitvec::Msb0>,
        ctx: Ctx,
    ) -> Result<(&'a bitvec::BitSlice<u8, bitvec::Msb0>, Self), DekuError>
    where
        Self: Sized;
}

/// "Reader" trait: implemented on DekuRead struct and enum containers. A `container` is a type which
/// doesn't need any context information.
pub trait DekuContainerRead<'a>: DekuRead<'a, ()> {
    /// Read bytes and construct type
    /// * **input** - Input given as data and bit offset
    ///
    /// Returns the remaining bytes and bit offset after parsing in addition to Self.
    fn from_bytes(input: (&'a [u8], usize)) -> Result<((&'a [u8], usize), Self), DekuError>
    where
        Self: Sized;
}

/// "Writer" trait: write from type to bits
pub trait DekuWrite<Ctx = ()> {
    /// Write type to bits
    /// * **output** - Sink to store resulting bits
    /// * **ctx** - A context required by context-sensitive reading. A unit type `()` means no context
    /// needed.
    fn write(
        &self,
        output: &mut bitvec::BitVec<u8, bitvec::Msb0>,
        ctx: Ctx,
    ) -> Result<(), DekuError>;
}

/// "Writer" trait: implemented on DekuWrite struct and enum containers. A `container` is a type which
/// doesn't need any context information.
pub trait DekuContainerWrite: DekuWrite<()> {
    /// Write struct/enum to Vec<u8>
    fn to_bytes(&self) -> Result<Vec<u8>, DekuError>;

    /// Write struct/enum to BitVec
    fn to_bits(&self) -> Result<bitvec::BitVec<u8, bitvec::Msb0>, DekuError>;
}

/// "Updater" trait: apply mutations to a type
pub trait DekuUpdate {
    /// Apply updates
    fn update(&mut self) -> Result<(), DekuError>;
}

/// "Extended Enum" trait: obtain additional enum information
pub trait DekuEnumExt<'a, T> {
    /// Obtain `id` of a given enum variant
    fn deku_id(&self) -> Result<T, DekuError>;
}

/// Implements DekuWrite for references of types that implement DekuWrite
impl<T, Ctx> DekuWrite<Ctx> for &T
where
    T: DekuWrite<Ctx>,
    Ctx: Copy,
{
    /// Write value of type to bits
    fn write(
        &self,
        output: &mut bitvec::BitVec<u8, bitvec::Msb0>,
        ctx: Ctx,
    ) -> Result<(), DekuError> {
        <T>::write(self, output, ctx)?;
        Ok(())
    }
}

#[cfg(test)]
#[path = "../tests/test_common/mod.rs"]
pub mod test_common;