1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
use core::default::Default;
use core::ops::{Deref, DerefMut};
use core::marker::PhantomData;
use core::mem;
use core::slice;

use cbuf::CBuf;
use alloc::heap;

use super::types::{Result, Error, IndexLoc, BlockLoc};
use super::raw_pool::{RawPool, Index, Block, Full, DisplayPool};

/// return the ceiling of a / b
fn ceil(a: usize, b: usize) -> usize {
    a / b + (if a % b != 0 { 1 } else { 0 })
}

/**
`Pool` contains a "pool" of memory which can be allocated and used

Pool memory can be accessed through the `alloc` and `alloc_slice` methods,
returning memory protected behind a `Mutex`. The Mutex allows the Pool to
defragment application memory when it is not in use, solving the problem
of memory fragmentation for embedded systems.

It is up to the user to call `defrag` and `clean` when they can, to keep
memory defragmeneted. These methods are not yet profiled, but it should
be expected that `clean` will take less than 10ms and `defrag` will take
less than 100ms on most platforms.
*/
pub struct Pool {
    raw: *mut RawPool,
}

impl Drop for Pool {
    fn drop(&mut self) {
        unsafe {
            let align = mem::size_of::<usize>();
            let size_raw = mem::size_of::<RawPool>();
            let raw = &mut *self.raw;
            let size_indexes = raw.len_indexes() as usize * mem::size_of::<Index>();
            let size_blocks = raw.len_blocks() as usize * mem::size_of::<Block>();
            let size_cache = raw.index_cache.len() as usize * mem::size_of::<IndexLoc>();

            // They have to be deallocated in the reverse order they were allocated
            heap::deallocate(raw.index_cache.as_mut_ptr() as *mut u8, size_cache, align);
            heap::deallocate(raw._indexes as *mut u8, size_indexes, align);
            heap::deallocate(raw._blocks as *mut u8, size_blocks, align);
            heap::deallocate(self.raw as *mut u8, size_raw, align);
        }
    }
}

impl Pool {
    /**
    Create a new pool of the requested size and number of indexes.

    `size` is total size in bytes of the internal block pool. Some of this space
    will be used to keep track of the size and index of the allocated data.

    `indexes` are the total number of indexes available. This is the maximum
    number of simultanious allocations that can be taken out of the pool.
    Allocating a Mutex uses an index, dropping the Mutex frees the index.

    `index_cache` is the maximum number of indexes that can be stored in the
    cache. If there are no indexes in the cache, the maximum lookup time to
    obtain an index is O(indexes.len()). Setting index_cache == indexes
    will ensure that indexes are found in O(1). For most applications,
    setting index_cache = 1/10 of indexes or less is recommended
    */
    pub fn new(size: usize, indexes: IndexLoc, index_cache: IndexLoc) -> Result<Pool> {
        let cache_len = if index_cache == 0 {
            1
        } else if index_cache > indexes {
            indexes
        } else {
            index_cache
        };
        let num_blocks = ceil(size, mem::size_of::<Block>());
        if indexes > IndexLoc::max_value() / 2 || num_blocks > BlockLoc::max_value() as usize / 2 {
            return Err(Error::InvalidSize);
        }
        let num_indexes = indexes;
        unsafe {
            // allocate our memory
            let align = mem::size_of::<usize>();

            let size_raw = mem::size_of::<RawPool>();
            let size_indexes = num_indexes as usize * mem::size_of::<Index>();
            let size_blocks = num_blocks * mem::size_of::<Block>();
            let size_cache = cache_len as usize * mem::size_of::<IndexLoc>();

            let pool = heap::allocate(size_raw, align);
            let indexes = heap::allocate(size_indexes, align);
            let blocks = heap::allocate(size_blocks, align);
            let cache = heap::allocate(size_cache, align);

            // if any failed to allocate, deallocate in reverse order
            if pool.is_null() || indexes.is_null() || blocks.is_null() || cache.is_null() {
                if !cache.is_null() {
                    heap::deallocate(cache, size_cache as usize, align);
                }
                if !blocks.is_null() {
                    heap::deallocate(blocks, size_blocks, align);
                }
                if !indexes.is_null() {
                    heap::deallocate(indexes, size_indexes, align);
                }
                if !pool.is_null() {
                    heap::deallocate(pool, size_raw, align);
                }
                return Err(Error::OutOfMemory);
            }

            let pool = pool as *mut RawPool;
            let indexes = indexes as *mut Index;
            let blocks = blocks as *mut Block;
            let cache = cache as *mut IndexLoc;

            let cache_slice: &'static mut [IndexLoc] =
                slice::from_raw_parts_mut(cache, cache_len as usize);
            let index_cache = CBuf::new(cache_slice);

            // initialize our memory and return
            *pool = RawPool::new(indexes, num_indexes, blocks, num_blocks as u16, index_cache);
            Ok(Pool::from_raw(pool))
        }
    }

    /**
    !! UNSTABLE !!

    get a Pool from a RawPool that you have initialized.
    unsafe: currently `alloc::heap::dealloc` will be called on the
    memory when `Pool` it goes out of scope, so you must ensure that
    Pool does not go out of scope... or something
    */
    pub unsafe fn from_raw(raw: *mut RawPool) -> Pool {
        Pool { raw: raw }
    }

    /**
    attempt to allocate memory of type T, returning `Result<Mutex<T>>`.

    If `Ok(Mutex<T>)`, the memory will have been initialized to `T.default`
    and can be unlocked and used by calling `Mutex.try_lock`.

    This function uses a "best fit" approach with bins to speed it up.
    It will search the lowest bin that might fit and will return the free
    block with the closest fit.

    The longest time this can take is `O(f + i)` where `f` is the number of
    free blocks in the lowest bin that matches and `i` is the total number
    of indexes.

    For error results, see `Error`.
    */
    pub fn alloc<T: Default>(&self) -> Result<Mutex<T>> {
        self._alloc(false)
    }

    /**
    See `Pool.alloc` for description of use.

    This allocation method should be used if allocation is time-critical.
    Unlike `Pool.alloc`, this method guarantees O(i) allocation time,
    where `i` is the number of indexes (but is affected by `index_cache`).

    `alloc_fast` works by only looking in freed bins that are guaranteed
    to fit the requested size of memory. On average, `alloc_fast` will lead
    to more fragmentation of memory, and therefore require `defrag` to be
    called more often.

    Also, this method may return Error::Fragmented when `Pool.alloc`
    returns Ok, due to the fact that not all possible free blocks were
    checked.
    */
    pub fn alloc_fast<T: Default>(&self) -> Result<Mutex<T>> {
        self._alloc(true)
    }

    #[inline]
    fn _alloc<T: Default>(&self, fast: bool) -> Result<Mutex<T>> {
        unsafe {
            let actual_size: usize = mem::size_of::<Full>() + mem::size_of::<T>();
            let blocks = ceil(actual_size, mem::size_of::<Block>());
            if blocks > (*self.raw).len_blocks() as usize {
                return Err(Error::InvalidSize);
            }
            let i = try!((*self.raw).alloc_index(blocks as u16, fast));
            let index = (*self.raw).index(i);
            let mut p = (*self.raw).data(index.block()) as *mut T;
            *p = T::default();
            Ok(Mutex {
                   index: i,
                   pool: self,
                   _type: PhantomData,
               })
        }
    }

    /**
    Attempt to allocate a slice of memory with `len` of `T` elements,
    returning `Result<SliceMutex<T>>`.

    If `Ok(SliceMutex<T>)`, all elements of the slice will have been
    initialized to `T.default` and can be unlocked and used by calling
    `Mutex.try_lock`.

    For additional information, see `Pool.alloc`
    */
    pub fn alloc_slice<T: Default>(&self, len: BlockLoc) -> Result<SliceMutex<T>> {
        self._alloc_slice(len, false)
    }

    /// See `Pool.alloc_sice` for description of use.
    ///
    /// See `Pool.alloc_fast` for description of performance characteristics.
    pub fn alloc_slice_fast<T: Default>(&self, len: BlockLoc) -> Result<SliceMutex<T>> {
        self._alloc_slice(len, true)
    }

    #[inline]
    fn _alloc_slice<T: Default>(&self, len: BlockLoc, fast: bool) -> Result<SliceMutex<T>> {
        unsafe {
            let actual_size: usize = mem::size_of::<Full>() + mem::size_of::<T>() * len as usize;
            let blocks = ceil(actual_size, mem::size_of::<Block>());
            if blocks > (*self.raw).len_blocks() as usize {
                return Err(Error::InvalidSize);
            }
            let i = try!((*self.raw).alloc_index(blocks as u16, fast));
            let index = (*self.raw).index(i);
            let mut p = (*self.raw).data(index.block()) as *mut T;
            for _ in 0..len {
                *p = T::default();
                p = p.offset(1);
            }
            Ok(SliceMutex {
                   index: i,
                   len: len,
                   pool: self,
                   _type: PhantomData,
               })
        }
    }


    /// call this to be able to printout the status of the `Pool`.
    pub fn display(&self) -> DisplayPool {
        unsafe { (*self.raw).display() }
    }

    /// clean the `Pool`, combining contigous blocks of free memory.
    pub fn clean(&self) {
        unsafe { (*self.raw).clean() }
    }

    /// !! UNSTABLE !!
    ///
    /// defragment the `Pool`, combining blocks of
    /// used memory and increasing the size of the
    /// heap.
    ///
    /// This method is currently blocking, options are being looked into
    /// to guarantee some kind of maximum time per call.
    pub fn defrag(&self) {
        unsafe { (*self.raw).defrag() }
    }

    /// get the total size of the `Pool` in bytes
    pub fn size(&self) -> usize {
        unsafe { (*self.raw).size() }
    }

    /// get the total number of indexes in the `Pool`
    pub fn len_indexes(&self) -> IndexLoc {
        unsafe { (*self.raw).len_indexes() }
    }
}

// ##################################################
// # Standard Mutex

/**
All allocated data is represented as some kind of a Mutex. When the data
is unlocked, the underlying `Pool` is free to move it and reduce
fragmentation

See https://doc.rust-lang.org/std/sync/struct.Mutex.html for
more information on the general API
*/
pub struct Mutex<'a, T> {
    index: IndexLoc,
    pool: &'a Pool,
    _type: PhantomData<T>,
}

impl<'mutex, T> Mutex<'mutex, T> {
    /**
    Get a usable value, locking the underlying memory from being
    defragmented by the Pool.

    While the memory is locked, it cannot be moved by the Pool, which means
    that defragmentation is not as efficient as possible.
    It is recommended to `drop` the returned `Value` as soon
    as possible (i.e. let it go out of scope). Basically, one should use
    this object the same way they normally use a mutex -- hold onto references
    as briefly as possible.

    > Note that currently, `Mutex` can only exist in a single thread,
    > which means that `lock` is always non-blocking.
    */
    pub fn lock<'a>(&'a mut self) -> Value<'a, 'mutex, T> {
        unsafe {
            let pool = &*self.pool.raw;
            let block = pool.index(self.index).block();
            let full = pool.full_mut(block);
            assert!(!full.is_locked());
            full.set_lock();
            assert!(full.is_locked());
            Value { __lock: self }
        }
    }
}

impl<'a, T> Drop for Mutex<'a, T> {
    fn drop(&mut self) {
        unsafe { (*self.pool.raw).dealloc_index(self.index) }
    }
}


/**
A value which can be used through `Deref`

When this is dropped, the memory it is referencing
is automatically unlocked, which allows it to be
defragmented. This object should be dropped as
soon as possible to allow for defragmentation to take
place.
*/
pub struct Value<'a, 'mutex: 'a, T: 'mutex> {
    __lock: &'a Mutex<'mutex, T>,
}

impl<'a, 'mutex: 'a, T: 'mutex> Drop for Value<'a, 'mutex, T> {
    fn drop(&mut self) {
        unsafe {
            let pool = &mut *self.__lock.pool.raw;
            let index = pool.index(self.__lock.index);
            pool.full_mut(index.block()).clear_lock();
        }
    }
}

impl<'a, 'mutex: 'a, T: 'mutex> Deref for Value<'a, 'mutex, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe {
            let pool = &*self.__lock.pool.raw;
            let index = &pool.index(self.__lock.index);
            &*(pool.data(index.block()) as *const T)
        }
    }
}

impl<'a, 'mutex: 'a, T: 'mutex> DerefMut for Value<'a, 'mutex, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe {
            let pool = &*self.__lock.pool.raw;
            let index = &pool.index(self.__lock.index);
            &mut *(pool.data(index.block()) as *mut T)
        }
    }
}

// ##################################################
// # Slice Mutex

/// same as `Mutex` except locks a `Slice`
pub struct SliceMutex<'a, T> {
    index: IndexLoc,
    pool: &'a Pool,
    len: BlockLoc,
    _type: PhantomData<T>,
}

impl<'a, T> Drop for SliceMutex<'a, T> {
    fn drop(&mut self) {
        unsafe { (*self.pool.raw).dealloc_index(self.index) }
    }
}

impl<'mutex, T> SliceMutex<'mutex, T> {
    /**
    Get a usable Slice, locking the underlying memory from being
    defragmented by the Pool.

    See `Mutex.lock` for more information.
     */
    pub fn lock<'a>(&'a mut self) -> Slice<'a, 'mutex, T> {
        unsafe {
            let pool = &*self.pool.raw;
            let block = pool.index(self.index).block();
            let full = pool.full_mut(block);
            assert!(!full.is_locked());
            full.set_lock();
            assert!(full.is_locked());
            Slice { __lock: self }
        }
    }
}

/**
A [`slice`](https://doc.rust-lang.org/std/slice) which
can be used through `Deref`.

See `Value` for more information.
*/
pub struct Slice<'a, 'mutex: 'a, T: 'mutex> {
    __lock: &'a mut SliceMutex<'mutex, T>,
}

impl<'a, 'mutex: 'a, T: 'mutex> Drop for Slice<'a, 'mutex, T> {
    fn drop(&mut self) {
        unsafe {
            let pool = &mut *self.__lock.pool.raw;
            let index = pool.index(self.__lock.index);
            pool.full_mut(index.block()).clear_lock();
        }
    }
}

impl<'a, 'mutex: 'a, T: 'mutex> Deref for Slice<'a, 'mutex, T> {
    type Target = [T];

    fn deref(&self) -> &[T] {
        unsafe {
            let pool = &*self.__lock.pool.raw;
            let index = &pool.index(self.__lock.index);
            let t: *const T = mem::transmute(pool.data(index.block()));
            // slice::from_raw_parts::<'a>(t, self.__lock.len as usize)
            slice::from_raw_parts(t, self.__lock.len as usize)
        }
    }
}


impl<'a, 'mutex: 'a, T: 'mutex> DerefMut for Slice<'a, 'mutex, T> {
    fn deref_mut(&mut self) -> &mut [T] {
        unsafe {
            let pool = &*self.__lock.pool.raw;
            let index = &pool.index(self.__lock.index);
            let t: *mut T = mem::transmute(pool.data(index.block()));
            slice::from_raw_parts_mut(t, self.__lock.len as usize)
        }
    }
}

#[test]
fn test_alloc() {
    let pool = Pool::new(4096, 256, 25).unwrap();
    let expected = 0x01010101;

    let mut mutex = pool.alloc::<u32>().unwrap();
    let mut locked = mutex.lock();

    {
        let rmut = locked.deref_mut();
        *rmut = expected;
    }
    assert_eq!(locked.deref(), &expected);

    let expected2 = -1000;
    let mut mutex2 = pool.alloc::<i64>().unwrap();
    let mut locked2 = mutex2.lock();
    {
        let rmut = locked2.deref_mut();
        *rmut = expected2;
    }
    assert_eq!(locked2.deref(), &expected2);
}

#[test]
fn test_alloc_slice() {
    let pool = Pool::new(4096 * mem::size_of::<Block>(), 256, 25).unwrap();

    let mut mutex = pool.alloc_slice::<u16>(10000).unwrap();
    let mut slice = mutex.lock();
    // TODO: make a test that makes sure this doesn't compile
    // let mut slice2 = mutex.lock();
    {
        let rmut = slice.deref_mut();
        for n in 0..10000 {
            assert_eq!(rmut[n], 0);
            rmut[n] = n as u16;
        }
    }

    {
        let r = slice.deref_mut();
        for n in 0..10000 {
            assert_eq!(r[n], n as u16);
        }
    }
}