1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
use crate::context::*;
use std::collections::VecDeque;

/// Alias for deferred logic part that takes current context and produces new one that will be
/// passed to next deferred step execution.
pub type Part<S> = fn(input: Context<S>) -> Context<S>;

/// Struct that holds parts and state of deferred logic to execute whenever you want to.
///
/// # Note
/// Everytime when you want to resume execution, you consume deferred context and produce new one
/// so keep in mind to restore it before `resume()` and store it again after `resume()`.
pub struct Deferred<S> {
    parts: VecDeque<Part<S>>,
    context: Context<S>,
}

impl<S> Deferred<S> {
    /// Creates new deferred execution.
    ///
    /// # Arguments
    /// * `state` - context initial state.
    /// * `parts` - vector of logic parts.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate deferred;
    /// # use deferred::*;
    /// # fn main() {
    /// fn foo(v: i32) -> Deferred<i32> {
    ///     deferred!(v, [
    ///         |c| state!(c.state() + 1),
    ///         |c| state!(c.state() + 2)
    ///     ])
    /// }
    ///
    /// assert_eq!(foo(1).consume(), 4);
    /// # }
    /// ```
    pub fn new(state: S, parts: Vec<Part<S>>) -> Self {
        let mut p = VecDeque::new();
        p.extend(parts);
        Self {
            parts: p,
            context: Context::State(state),
        }
    }

    /// Tells if deferred execution can be resumed.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate deferred;
    /// # use deferred::*;
    /// # fn main() {
    /// fn foo(v: i32) -> Deferred<i32> {
    ///     deferred!(v, [
    ///         |c| state!(c.state() + 1),
    ///         |c| state!(c.state() + 2)
    ///     ])
    /// }
    ///
    /// let d = foo(1);
    /// assert_eq!(d.can_resume(), true);
    /// let d = d.resume().unwrap();
    /// assert_eq!(d.can_resume(), true);
    /// let d = d.resume().unwrap();
    /// assert_eq!(d.can_resume(), false);
    /// # }
    /// ```
    pub fn can_resume(&self) -> bool {
        match &self.context {
            Context::State(_) => !self.parts.is_empty(),
            Context::Deferred(d) => d.can_resume() || !self.parts.is_empty(),
        }
    }

    /// Gets reference to current state stored in context.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate deferred;
    /// # use deferred::*;
    /// # fn main() {
    /// fn foo(v: i32) -> Deferred<i32> {
    ///     deferred!(v, [
    ///         |c| state!(c.state() + 1),
    ///         |c| state!(c.state() + 2)
    ///     ])
    /// }
    ///
    /// let d = foo(1);
    /// assert_eq!(d.state(), Some(&1));
    /// let d = d.resume().unwrap();
    /// assert_eq!(d.state(), Some(&2));
    /// let d = d.resume().unwrap();
    /// assert_eq!(d.state(), Some(&4));
    /// # }
    /// ```
    pub fn state(&self) -> Option<&S> {
        self.context.get_state()
    }

    /// Resumes deferred execution, which means we execute next logic part and store its state.
    ///
    /// # Note
    /// While you resume execution, you consume it and return new one so keep in mind that you need
    /// to store it again or replace with old one after calling `resume()`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate deferred;
    /// # use deferred::*;
    /// # fn main() {
    /// fn foo(v: i32) -> Deferred<i32> {
    ///     deferred!(v, [
    ///         |c| state!(c.state() + 1),
    ///         |c| foo2(c.state()).into(),
    ///         |c| state!(c.state() + 2)
    ///     ])
    /// }
    ///
    /// fn foo2(v: i32) -> Deferred<i32> {
    ///     deferred!(v, [
    ///         |c| state!(c.state() * 2),
    ///         |c| state!(c.state() * 3)
    ///     ])
    /// }
    ///
    /// let d = foo(1);
    /// assert!(d.can_resume());
    /// assert_eq!(d.state(), Some(&1));
    ///
    /// let d = d.resume().unwrap();
    /// assert!(d.can_resume());
    /// assert_eq!(d.state(), Some(&2));
    ///
    /// let d = d.resume().unwrap();
    /// assert!(d.can_resume());
    /// assert_eq!(d.state(), Some(&4));
    ///
    /// let d = d.resume().unwrap();
    /// assert!(d.can_resume());
    /// assert_eq!(d.state(), Some(&12));
    ///
    /// let d = d.resume().unwrap();
    /// assert!(!d.can_resume());
    /// assert_eq!(d.state(), Some(&14));
    /// # }
    /// ```
    pub fn resume(mut self) -> Option<Self> {
        match self.context {
            Context::State(state) => {
                if let Some(part) = self.parts.pop_front() {
                    let context = part(Context::State(state));
                    if context.is_deferred() {
                        self.context = context;
                        self.resume()
                    } else {
                        self.context = context;
                        Some(self)
                    }
                } else {
                    None
                }
            }
            Context::Deferred(deferred) => {
                if deferred.can_resume() {
                    if let Some(deferred) = deferred.resume() {
                        self.context = deferred.into();
                        Some(self)
                    } else {
                        None
                    }
                } else {
                    self.context = Context::State(deferred.consume());
                    self.resume()
                }
            }
        }
    }

    /// Consumes deferred execution, which means we execute all remaining logic parts and returns
    /// final state.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate deferred;
    /// # use deferred::*;
    /// # fn main() {
    /// fn foo(v: i32) -> Deferred<i32> {
    ///     deferred!(v, [
    ///         |c| state!(c.state() + 1),
    ///         |c| state!(c.state() + 2)
    ///     ])
    /// }
    ///
    /// assert_eq!(foo(1).consume(), 4);
    /// # }
    /// ```
    pub fn consume(mut self) -> S {
        while self.can_resume() {
            self = self.resume().unwrap();
        }
        self.context.state()
    }

    /// Alias for `consume()` method.
    #[inline]
    pub fn unwrap(self) -> S {
        self.consume()
    }
}

impl<S> Into<Context<S>> for Deferred<S> {
    fn into(self) -> Context<S> {
        Context::Deferred(Box::new(self))
    }
}