1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
use crate::debug_probe::{
    MasterProbe,
    CpuInformation,
    DebugProbeError,
};
use arm_memory::MI;
use super::{
    CoreRegister,
    CoreRegisterAddress,
    Core,
};
use bitfield::bitfield;

use serde::{ Serialize, Deserialize };
use log::debug;

#[derive(Debug,Serialize,Deserialize)]
pub struct CortexDump {
    pub regs:  [u32;16],
    stack_addr: u32,
    stack: Vec<u8>,
}

impl CortexDump {
    pub fn new(stack_addr: u32, stack: Vec<u8>) -> CortexDump {
        CortexDump {
            regs: [0u32;16],
            stack_addr,
            stack,
        }
    }
}

bitfield!{
    #[derive(Copy, Clone)]
    pub struct Dhcsr(u32);
    impl Debug;
    pub s_reset_st, _: 25;
    pub s_retire_st, _: 24;
    pub s_lockup, _: 19;
    pub s_sleep, _: 18;
    pub s_halt, _: 17;
    pub s_regrdy, _: 16;
    pub _, set_c_maskints: 3;
    pub _, set_c_step: 2;
    pub _, set_c_halt: 1;
    pub _, set_c_debugen: 0;
}

impl Dhcsr {
    /// This function sets the bit to enable writes to this register.
    /// 
    /// C1.6.3 Debug Halting Control and Status Register, DHCSR:
    /// Debug key:
    /// Software must write 0xA05F to this field to enable write accesses to bits
    /// [15:0], otherwise the processor ignores the write access.
    pub fn enable_write(&mut self) {
        self.0 |= 0xa05f << 16;
    }
}

impl From<u32> for Dhcsr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Dhcsr> for u32 {
    fn from(value: Dhcsr) -> Self {
        value.0
    }
}

impl CoreRegister for Dhcsr {
    const ADDRESS: u32 = 0xE000_EDF0;
    const NAME: &'static str = "DHCSR";
}

bitfield!{
    #[derive(Copy, Clone)]
    pub struct Dcrsr(u32);
    impl Debug;
    pub _, set_regwnr: 16;
    pub _, set_regsel: 4,0;
}

impl From<u32> for Dcrsr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Dcrsr> for u32 {
    fn from(value: Dcrsr) -> Self {
        value.0
    }
}

impl CoreRegister for Dcrsr {
    const ADDRESS: u32 = 0xE000_EDF4;
    const NAME: &'static str = "DCRSR";
}

#[derive(Debug, Copy, Clone)]
pub struct Dcrdr(u32);

impl From<u32> for Dcrdr {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Dcrdr> for u32 {
    fn from(value: Dcrdr) -> Self {
        value.0
    }
}

impl CoreRegister for Dcrdr {
    const ADDRESS: u32 = 0xE000_EDF8;
    const NAME: &'static str = "DCRDR";
}

bitfield!{
    #[derive(Copy, Clone)]
    pub struct BpCtrl(u32);
    impl Debug;
    /// The number of breakpoint comparators. If NUM_CODE is zero, the implementation does not support any comparators
    pub numcode, _: 7, 4;
    /// RAZ on reads, SBO, for writes. If written as zero, the write to the register is ignored.
    pub key, set_key: 1;
    /// Enables the BPU:
    /// 0 BPU is disabled.
    /// 1 BPU is enabled.
    /// This bit is set to 0 on a power-on reset
    pub _, set_enable: 0;
}

impl From<u32> for BpCtrl {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<BpCtrl> for u32 {
    fn from(value: BpCtrl) -> Self {
        value.0
    }
}

impl CoreRegister for BpCtrl {
    const ADDRESS: u32 = 0xE000_2000;
    const NAME: &'static str = "BP_CTRL";
}

bitfield!{
    #[derive(Copy, Clone)]
    pub struct BpCompx(u32);
    impl Debug;
    /// BP_MATCH defines the behavior when the COMP address is matched:
    /// - 00 no breakpoint matching.
    /// - 01 breakpoint on lower halfword, upper is unaffected.
    /// - 10 breakpoint on upper halfword, lower is unaffected.
    /// - 11 breakpoint on both lower and upper halfwords.
    /// - The field is UNKNOWN on reset.
    pub _, set_bp_match: 31,30;
    /// Stores bits [28:2] of the comparison address. The comparison address is
    /// compared with the address from the Code memory region. Bits [31:29] and
    /// [1:0] of the comparison address are zero.
    /// The field is UNKNOWN on power-on reset.
    pub _, set_comp: 28,2;
    /// Enables the comparator:
    /// 0 comparator is disabled.
    /// 1 comparator is enabled.
    /// This bit is set to 0 on a power-on reset.
    pub _, set_enable: 0;
}

impl From<u32> for BpCompx {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<BpCompx> for u32 {
    fn from(value: BpCompx) -> Self {
        value.0
    }
}

impl CoreRegister for BpCompx {
    const ADDRESS: u32 = 0xE000_2008;
    const NAME: &'static str = "BP_CTRL0";
}

pub const R0:  CoreRegisterAddress = CoreRegisterAddress(0b00000);
pub const R1:  CoreRegisterAddress = CoreRegisterAddress(0b00001);
pub const R2:  CoreRegisterAddress = CoreRegisterAddress(0b00010);
pub const R3:  CoreRegisterAddress = CoreRegisterAddress(0b00011);
pub const R4:  CoreRegisterAddress = CoreRegisterAddress(0b00100);
pub const R9:  CoreRegisterAddress = CoreRegisterAddress(0b01001);
pub const PC:  CoreRegisterAddress = CoreRegisterAddress(0b01111);
pub const SP:  CoreRegisterAddress = CoreRegisterAddress(0b01101);
pub const LR:  CoreRegisterAddress = CoreRegisterAddress(0b01110);
pub const MSP: CoreRegisterAddress = CoreRegisterAddress(0b01001);
pub const PSP: CoreRegisterAddress = CoreRegisterAddress(0b01010);

#[derive(Debug, Default, Copy, Clone)]
pub struct M0;


impl M0 {
    fn wait_for_core_register_transfer(&self, mi: &mut impl MI) -> Result<(), DebugProbeError> {
        // now we have to poll the dhcsr register, until the dhcsr.s_regrdy bit is set
        // (see C1-292, cortex m0 arm)
        for _ in 0..100 {
            let dhcsr_val = Dhcsr(mi.read32(Dhcsr::ADDRESS)?);

            if dhcsr_val.s_regrdy() {
                return Ok(());
            }
        }
        Err(DebugProbeError::Timeout)
    }
}

impl Core for M0 {
    fn wait_for_core_halted(&self, mi: &mut MasterProbe) -> Result<(), DebugProbeError> {
        // Wait until halted state is active again.
        for _ in 0..100 {
            let dhcsr_val = Dhcsr(mi.read32(Dhcsr::ADDRESS)?);

            if dhcsr_val.s_halt() {
                return Ok(());
            }
        }
        Err(DebugProbeError::Timeout)
    }

    fn read_core_reg(&self, mi: &mut MasterProbe, addr: CoreRegisterAddress) -> Result<u32, DebugProbeError> {
        // Write the DCRSR value to select the register we want to read.
        let mut dcrsr_val = Dcrsr(0);
        dcrsr_val.set_regwnr(false); // Perform a read.
        dcrsr_val.set_regsel(addr.into());  // The address of the register to read.

        mi.write32(Dcrsr::ADDRESS, dcrsr_val.into())?;

        self.wait_for_core_register_transfer(mi)?;

        mi.read32(Dcrdr::ADDRESS).map_err(From::from)
    }

    fn write_core_reg(&self, mi: &mut MasterProbe, addr: CoreRegisterAddress, value: u32) -> Result<(), DebugProbeError> {
        let result: Result<(), DebugProbeError> = mi.write32(Dcrdr::ADDRESS, value).map_err(From::from);
        result?;

        self.wait_for_core_register_transfer(mi)?;

        // write the DCRSR value to select the register we want to write.
        let mut dcrsr_val = Dcrsr(0);
        dcrsr_val.set_regwnr(true); // Perform a write.
        dcrsr_val.set_regsel(addr.into()); // The address of the register to write.

        mi.write32(Dcrsr::ADDRESS, dcrsr_val.into())?;

        self.wait_for_core_register_transfer(mi)
    }

    fn halt(&self, mi: &mut MasterProbe) -> Result<CpuInformation, DebugProbeError> {
        // TODO: Generic halt support

        let mut value = Dhcsr(0);
        value.set_c_halt(true);
        value.set_c_debugen(true);
        value.enable_write();

        mi.write32(Dhcsr::ADDRESS, value.into())?;

        // try to read the program counter
        let pc_value = self.read_core_reg(mi, PC)?;

        // get pc
        Ok(CpuInformation {
            pc: pc_value,
        })
    }

    fn run(&self, mi: &mut MasterProbe) -> Result<(), DebugProbeError> {
        let mut value = Dhcsr(0);
        value.set_c_halt(false);
        value.set_c_debugen(true);
        value.enable_write();

        mi.write32(Dhcsr::ADDRESS, value.into()).map_err(Into::into)
    }

    fn step(&self, mi: &mut MasterProbe) -> Result<CpuInformation, DebugProbeError> {
        let mut value = Dhcsr(0);
        // Leave halted state.
        // Step one instruction.
        value.set_c_step(true);
        value.set_c_halt(false);
        value.set_c_debugen(true);
        value.set_c_maskints(true);
        value.enable_write();

        mi.write32(Dhcsr::ADDRESS, value.into())?;

        self.wait_for_core_halted(mi)?;

        // try to read the program counter
        let pc_value = self.read_core_reg(mi, PC)?;

        // get pc
        Ok(CpuInformation {
            pc: pc_value,
        })
    }

    fn get_available_breakpoint_units(&self, mi: &mut MasterProbe) -> Result<u32, DebugProbeError> {
        let result = mi.read32(BpCtrl::ADDRESS)?;

        self.wait_for_core_register_transfer(mi)?;

        Ok(result)
    }

    fn enable_breakpoints(&self, mi: &mut MasterProbe, state: bool) -> Result<(), DebugProbeError> {
        debug!("Enabling breakpoints: {:?}", state);
        let mut value = BpCtrl(0);
        value.set_key(true);
        value.set_enable(state);

        mi.write32(BpCtrl::ADDRESS, value.into())?;

        self.wait_for_core_halted(mi)
    }

    fn set_breakpoint(&self, mi: &mut MasterProbe, addr: u32) -> Result<(), DebugProbeError> {
        debug!("Setting breakpoint on address 0x{:08x}", addr);
        let mut value = BpCompx(0);
        value.set_bp_match(0b11);
        value.set_comp((addr >> 2) & 0x00FFFFFF);
        value.set_enable(true);

        mi.write32(BpCompx::ADDRESS, value.into())?;

        self.wait_for_core_halted(mi)
    }

    fn enable_breakpoint(&self, _mi: &mut MasterProbe, _addr: u32) -> Result<(), DebugProbeError> {
        unimplemented!();
    }

    fn disable_breakpoint(&self, _mi: &mut MasterProbe, _addr: u32) -> Result<(), DebugProbeError> {
        unimplemented!();
    }

    fn read_block8(&self, mi: &mut MasterProbe, address: u32, data: &mut [u8]) -> Result<(), DebugProbeError> {
        Ok(mi.read_block8(address, data)?)
    }
}

pub struct FakeM0 {
    dump: CortexDump,
}

impl FakeM0 {
    pub fn new(dump: CortexDump) -> FakeM0 {
        FakeM0 {
            dump
        }
    }
}

impl Core for FakeM0 {
    fn wait_for_core_halted(&self, mi: &mut MasterProbe) -> Result<(), DebugProbeError> {
        unimplemented!();
    }
    
    fn halt(&self, mi: &mut MasterProbe) -> Result<CpuInformation, DebugProbeError> {
        unimplemented!()
    }

    fn run(&self, mi: &mut MasterProbe) -> Result<(), DebugProbeError> {
        unimplemented!()
    }

    /// Steps one instruction and then enters halted state again.
    fn step(&self, mi: &mut MasterProbe) -> Result<CpuInformation, DebugProbeError> {
        unimplemented!()
    }

    fn read_core_reg(&self, mi: &mut MasterProbe, addr: CoreRegisterAddress) -> Result<u32, DebugProbeError> {
        let index: u32 = addr.into();

        self.dump.regs.get(index as usize).map(|v| *v).ok_or(DebugProbeError::UnknownError)
    }

    fn write_core_reg(&self, mi: &mut MasterProbe, addr: CoreRegisterAddress, value: u32) -> Result<(), DebugProbeError> {
        unimplemented!()
    }

    fn get_available_breakpoint_units(&self, mi: &mut MasterProbe) -> Result<u32, DebugProbeError> {
        unimplemented!()
    }

    fn enable_breakpoints(&self, mi: &mut MasterProbe, state: bool) -> Result<(), DebugProbeError> {
        unimplemented!()
    }

    fn set_breakpoint(&self, mi: &mut MasterProbe, addr: u32) -> Result<(), DebugProbeError> {
        unimplemented!()
    }

    fn enable_breakpoint(&self, mi: &mut MasterProbe, addr: u32) -> Result<(), DebugProbeError> {
        unimplemented!()
    }

    fn disable_breakpoint(&self, mi: &mut MasterProbe, addr: u32) -> Result<(), DebugProbeError> { 
        unimplemented!()
    }

    fn read_block8(&self, mi: &mut MasterProbe, address: u32, data: &mut [u8]) -> Result<(), DebugProbeError> {
        debug!("Read from dump: addr=0x{:08x}, len={}", address, data.len());

        if (address < self.dump.stack_addr) || (address as usize > (self.dump.stack_addr as usize + self.dump.stack.len())) {
            return Err(DebugProbeError::UnknownError);
        }

        if address as usize + data.len() > (self.dump.stack_addr as usize + self.dump.stack.len()) {
            return Err(DebugProbeError::UnknownError);
        }

        let stack_offset = (address - self.dump.stack_addr) as usize;

        data.copy_from_slice(&self.dump.stack[stack_offset..(stack_offset+data.len())]);

        Ok(())
    }

}