1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
//! This package allows you to efficiently search for hex patterns in the
//! hex representation of [Decodable](self::Decodable) values.
//!
//! It is intended to find and search for these patterns in unix timestamps, specifically
//! occurences of `DEAD` within the timestamp but is not limited to this.
//!
//! ```
//! use deadyet::{to_next_dead, to_next_pattern, has_pattern, Decodable};
//!
//! assert_eq!(to_next_dead(0xDEAE), 0xFFFF);
//! assert_eq!(to_next_dead(0xDEACFF), 1);
//! assert_eq!(to_next_dead(0xDEAD0), 0);
//! assert_eq!(to_next_dead(0xDEAC0), 0x10);
//!
//! assert_eq!(to_next_pattern(0xAAAAA, 0xABBA, 0xFFFF), 0x110);
//!
//! assert!(has_pattern(0xAABBAA, 0xABBA));
//! ```

use std::fmt::UpperHex;
use std::time::SystemTime;

/// Implementors of this trait can be numerically expressed and reasonably mapped to
/// a `Vec<u8>` of hex digits.
///
/// The easiest auto trait implementation is [UpperHex](std::fmt::UpperHex).
pub trait Decodable {
    /// Converts the input into a vec of values 0 to 15
    /// ```
    /// use deadyet::Decodable;
    /// let dead: u64 = 0xDEAD;
    /// println!("{:?}", dead.to_hex());
    /// ```
    ///
    /// ```
    /// use deadyet::Decodable;
    /// assert_eq!(0x0123456789ABCDEFu64.to_hex(), [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
    /// ```
    fn to_hex(&self) -> Vec<u8>;

    /// Maps the hex representation back to a u64.
    fn to_pattern_u64(&self) -> u64;
}

impl<H: UpperHex> Decodable for H {
    fn to_hex(&self) -> Vec<u8> {
        let hex = format!("{:X}", self);
        hex.chars()
            .map(|x| match x {
                'A'..='F' => 10 + (x as u8) - b'A',
                _ => (x as u8) - b'0',
            })
            .collect()
    }

    /// Converts the pattern to a u64: `[13, 12, 10, 13] -> 0xDEAD`
    ///
    /// ```
    /// use deadyet::Decodable;
    /// assert_eq!(0xDEADu64.to_pattern_u64(), 0xDEADu64);
    /// ```
    fn to_pattern_u64(&self) -> u64 {
        let hex = &self.to_hex();
        hex.iter().fold(0u64, |a, x| a * 16 + *x as u64)
    }
}

/// Iterator to go through results of pattern search in order.
///
/// ```
/// use deadyet::*;
/// let mut deadpi = PatternIterator::new(0, 0xDEAD, 0xFFFF);
/// assert_eq!(deadpi.next(), Some(0xDEAD));
/// assert_eq!(deadpi.next(), Some(0x1DEAD));
/// assert_eq!(deadpi.next(), Some(0x2DEAD));
/// ```
///
/// ```
/// use deadyet::*;
/// let mut deadpi = PatternIterator::new(0xDEACAD, 0xDEAD, 0xFFFF);
/// assert_eq!(deadpi.next(), Some(0xDEAD00));
/// assert_eq!(deadpi.next(), Some(0xDEAD01));
/// assert_eq!(deadpi.next(), Some(0xDEAD02));
/// ```
pub struct PatternIterator {
    current: u64,
    pattern: u64,
    pattern_mask: u64,
}

impl PatternIterator {
    pub fn new<H: Decodable, I: Decodable, J: Decodable>(
        start: J,
        pattern: H,
        pattern_mask: I,
    ) -> PatternIterator {
        PatternIterator {
            current: start.to_pattern_u64(),
            pattern: pattern.to_pattern_u64(),
            pattern_mask: pattern_mask.to_pattern_u64(),
        }
    }
}

impl Iterator for PatternIterator {
    type Item = u64;

    fn next(&mut self) -> Option<Self::Item> {
        self.current += to_next_pattern(self.current, self.pattern, self.pattern_mask) + 1;
        Some(self.current - 1)
    }
}

/// Similar to [PatternIterator](self::PatternIterator), however efficiently describes ranges of pattern-truthness.
///
/// This iterator currenly only works with *full* pattern_mask ($2^i-1$)
///
/// ```
/// use deadyet::*;
///
/// let mut deadpri = PatternRangeIterator::new(0xDEAC0, 0xDEAD, 0xFFFF);
/// assert_eq!(deadpri.next(), Some((0xDEAD0, 0xDEADF)));
///
/// let mut b00b5pri = PatternRangeIterator::new(0xB00B00, 0xB00B5, 0xFFFFF);
/// assert_eq!(b00b5pri.next(), Some((0xB00B50, 0xB00B5F)));
/// assert_eq!(b00b5pri.next(), Some((0xBB00B5, 0xBB00B5)));
/// ```
pub struct PatternRangeIterator {
    current: u64,
    pattern: u64,
    pattern_mask: u64,
}
impl PatternRangeIterator {
    pub fn new<H: Decodable, I: Decodable, J: Decodable>(
        start: J,
        pattern: H,
        pattern_mask: I,
    ) -> PatternRangeIterator {
        PatternRangeIterator {
            current: start.to_pattern_u64(),
            pattern: pattern.to_pattern_u64(),
            pattern_mask: pattern_mask.to_pattern_u64(),
        }
    }
}

impl Iterator for PatternRangeIterator {
    type Item = (u64, u64);

    fn next(&mut self) -> Option<Self::Item> {
        let start_of_next =
            self.current + to_next_pattern(self.current, self.pattern, self.pattern_mask);
        let len = start_of_next.to_hex().len() as u64;
        let mut end = start_of_next;
        for i in (0..len).rev() {
            if has_pattern(start_of_next >> (i * 4), self.pattern) {
                end = start_of_next + 2u64.pow((i * 4) as u32) - 1;
                break;
            }
        }
        self.current = end + 1;
        Some((start_of_next, end))
    }
}

/// Creates a PatternRangeIterator for the pattern `DEAD`
pub fn dead_iterator<H: Decodable>(start: H) -> PatternIterator {
    PatternIterator::new(start, 0xDEAD, 0xFFFF)
}

/// Checks if `number` contains the hex pattern "DEAD".
pub fn has_dead<H: Decodable>(number: H) -> bool {
    let dead: u64 = 0xDEAD;
    has_pattern(number, &dead)
}

/// Checks whether or not the pattern of `pattern` is within the hex pattern of `number`.
///
/// ```
/// use deadyet::*;
/// let number: u64 = 0x12DE_AD34;
/// let dead: u64 = 0xDEAD;
/// assert!(has_pattern(number, dead));
/// assert!(!has_pattern(number ^ 0xFFFF_FFFF, dead));
/// ```
pub fn has_pattern<H: Decodable, P: Decodable>(number: H, pattern: P) -> bool {
    let nhex = number.to_hex();
    let phex = pattern.to_hex();
    let possible_starts = nhex.len() as isize - phex.len() as isize + 1;
    if possible_starts <= 0 {
        return false;
    }
    for i in 0..possible_starts as usize {
        if phex.as_slice() == &nhex[i..i + phex.len()] {
            return true;
        }
    }
    false
}

fn current_unix() -> u64 {
    match SystemTime::now().duration_since(SystemTime::UNIX_EPOCH) {
        Ok(n) => n.as_secs(),
        Err(_) => panic!("SystemTime before UNIX EPOCH!"),
    }
}

/// Returns whether the current unix timecode contains a `DEAD`.
pub fn is_it_dead() -> bool {
    has_dead(current_unix())
}

/// Returns the number of seconds until the next `DEAD` in the unix
/// timestamp.
pub fn secs_until_dead() -> u64 {
    to_next_dead(current_unix())
}

/// Returns the tuple (diff, abs) for the time until the next
/// `DEAD` as well as the unix timestamp of that event.
pub fn next_dead() -> (u64, u64) {
    let now = current_unix();
    let diff = to_next_dead(now);
    (diff, now + diff)
}

// Returns the time to next dead (or 0 if `after` is dead)
pub fn to_next_dead(number: u64) -> u64 {
    to_next_pattern(number, 0xDEAD, 0xFFFF)
}

/// Returns the time to the next dead ignoring the `lshd` least significant hex digits or 0 if `after` already contains `DEAD`.
/// In the case that there can be no `DEAD` after restricting the least significant bits, u64::MAX is returned.
pub fn to_next_dead_at_end(number: u64, lshd: usize) -> u64 {
    to_next_pattern_at_end(number, lshd, 0xDEAD, 0xFFFF)
}

use std::cmp::Ordering;

/// Returns the different to the next greater occurrence of the pattern.
pub fn to_next_pattern(number: u64, pattern: u64, pattern_mask: u64) -> u64 {
    let mut min = u64::MAX;
    let hexa = number.to_hex();
    for i in 0..(hexa.len()) {
        let x = to_next_pattern_at_end(number, i, pattern, pattern_mask);
        min = if min > x { x } else { min };
    }
    min
}

/// Returns the difference to the next greater occurrence of the `pattern` in relation to `number`.
pub fn to_next_pattern_at_end(number: u64, lshd: usize, pattern: u64, pattern_mask: u64) -> u64 {
    let remainder_mask = 2u64.pow(lshd as u32 * 4) - 1;
    //let remainder = remainder_mask - (number & remainder_mask);
    let restricted = (number >> (lshd * 4)) & pattern_mask;
    match restricted.cmp(&pattern) {
        Ordering::Greater => {
            ((pattern_mask - restricted + pattern + 1) << (lshd * 4)) - (number & remainder_mask)
        }
        Ordering::Equal => 0,
        Ordering::Less => ((pattern - restricted) << (lshd * 4)) - (number & remainder_mask),
    }
}