1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
//! Deadpool is a dead simple async pool for connections and objects
//! of any type.
//!
//! # Example
//!
//! ```rust
//! use async_trait::async_trait;
//!
//! #[derive(Debug)]
//! enum Error { Fail }
//!
//! struct Connection {}
//!
//! type Pool = deadpool::Pool<Connection, Error>;
//!
//! impl Connection {
//!     async fn new() -> Result<Self, Error> {
//!         Ok(Connection {})
//!     }
//!     async fn check_health(&self) -> bool {
//!         true
//!     }
//!     async fn do_something(&self) -> String {
//!         "Hooray!".to_string()
//!     }
//! }
//!
//! struct Manager {}
//!
//! #[async_trait]
//! impl deadpool::Manager<Connection, Error> for Manager
//! {
//!     async fn create(&self) -> Result<Connection, Error> {
//!         Connection::new().await
//!     }
//!     async fn recycle(&self, conn: &mut Connection) -> Result<(), Error> {
//!         if conn.check_health().await {
//!             Ok(())
//!         } else {
//!             Err(Error::Fail)
//!         }
//!     }
//! }
//!
//! #[tokio::main]
//! async fn main() {
//!     let mgr = Manager {};
//!     let pool = Pool::new(mgr, 16);
//!     let mut conn = pool.get().await.unwrap();
//!     let value = conn.do_something().await;
//!     assert_eq!(value, "Hooray!".to_string());
//! }
//! ```
//!
//! For a more complete example please see
//! [`deadpool-postgres`](https://crates.io/crates/deadpool-postgres)
#![warn(missing_docs)]

use std::ops::{Deref, DerefMut};
use std::sync::atomic::{AtomicIsize, AtomicUsize, Ordering};
use std::sync::{Arc, Weak};

use async_trait::async_trait;
use tokio::sync::mpsc::{channel, Receiver, Sender};
use tokio::sync::Mutex;

/// This trait is used to `create` new objects or `recycle` existing ones.
#[async_trait]
pub trait Manager<T, E> {
    /// Create a new instance of `T`
    async fn create(&self) -> Result<T, E>;
    /// Try to recycle an instance of `T` returning None` if the
    /// object could not be recycled.
    async fn recycle(&self, obj: &mut T) -> Result<(), E>;
}

enum ObjectState {
    New,
    Creating,
    Recycling,
    Ready,
}

/// A wrapper around the actual pooled object which implements the traits
/// `Deref`, `DerefMut` and `Drop`. Use this object just as if it was of type
/// `T` and upon leaving scope the `drop` function will take care of
/// returning it to the pool.
pub struct Object<T, E> {
    obj: Option<T>,
    state: ObjectState,
    pool: Weak<PoolInner<T, E>>,
}

impl<T, E> Object<T, E> {
    fn new(pool: &Pool<T, E>) -> Object<T, E> {
        Object {
            obj: None,
            state: ObjectState::New,
            pool: Arc::downgrade(&pool.inner),
        }
    }
}

impl<T, E> Drop for Object<T, E> {
    fn drop(&mut self) {
        if let Some(pool) = self.pool.upgrade() {
            match self.state {
                ObjectState::New => {
                    pool.available.fetch_add(1, Ordering::Relaxed);
                }
                ObjectState::Creating => {
                    pool.available.fetch_add(1, Ordering::Relaxed);
                    pool.size.fetch_sub(1, Ordering::Relaxed);
                }
                ObjectState::Recycling => {
                    pool.available.fetch_add(1, Ordering::Relaxed);
                    if let Err(e) = pool.obj_sender.clone().try_send(self.obj.take()) {
                        pool.available.fetch_sub(1, Ordering::Relaxed);
                        pool.size.fetch_sub(1, Ordering::Relaxed);
                        // This code should be unreachable. Still if this ever
                        // happens fixing the pool state is a good idea.
                        if !std::thread::panicking() {
                            unreachable!("Could not return object to pool: {}", e);
                        }
                    }
                }
                ObjectState::Ready => {
                    pool.return_obj(self.obj.take());
                }
            }
        }
        self.obj = None;
        self.state = ObjectState::New;
    }
}

impl<T, E> Deref for Object<T, E> {
    type Target = T;
    fn deref(&self) -> &T {
        self.obj.as_ref().unwrap()
    }
}

impl<T, E> DerefMut for Object<T, E> {
    fn deref_mut(&mut self) -> &mut T {
        self.obj.as_mut().unwrap()
    }
}

struct PoolInner<T, E> {
    manager: Box<dyn Manager<T, E> + Sync + Send>,
    max_size: usize,
    obj_sender: Sender<Option<T>>,
    obj_receiver: Mutex<Receiver<Option<T>>>,
    size: AtomicUsize,
    /// The number of available objects in the pool. If there are no
    /// objects in the pool this number can become negative and stores the
    /// number of futures waiting for an object.
    available: AtomicIsize,
}

impl<T, E> PoolInner<T, E> {
    fn return_obj(&self, obj: Option<T>) {
        match self.obj_sender.clone().try_send(obj) {
            Ok(_) => {
                self.available.fetch_add(1, Ordering::Relaxed);
            }
            Err(e) => {
                // This code should be unreachable. Still if this ever
                // happens fixing the pool state is a good idea.
                self.size.fetch_sub(1, Ordering::Relaxed);
                if !std::thread::panicking() {
                    unreachable!("Could not return object to pool: {}", e);
                }
            }
        }
    }
}

/// A generic object and connection pool.
///
/// This struct can be cloned and transferred across thread boundaries
/// and uses reference counting for its internal state.
pub struct Pool<T, E> {
    inner: Arc<PoolInner<T, E>>,
}

#[derive(Debug)]
/// The current pool status.
pub struct Status {
    size: usize,
    available: isize,
}

impl<T, E> Clone for Pool<T, E> {
    fn clone(&self) -> Pool<T, E> {
        Pool {
            inner: self.inner.clone(),
        }
    }
}

impl<T, E> Pool<T, E> {
    /// Create new connection pool with a given `manager` and `max_size`.
    /// The `manager` is used to create and recycle objects and `max_size`
    /// is the maximum number of objects ever created.
    pub fn new(manager: impl Manager<T, E> + Send + Sync + 'static, max_size: usize) -> Pool<T, E> {
        let (obj_sender, obj_receiver) = channel::<Option<T>>(max_size);
        Pool {
            inner: Arc::new(PoolInner {
                max_size: max_size,
                manager: Box::new(manager),
                obj_sender: obj_sender,
                obj_receiver: Mutex::new(obj_receiver),
                size: AtomicUsize::new(0),
                available: AtomicIsize::new(0),
            }),
        }
    }
    /// Retrieve object from pool or wait for one to become available.
    pub async fn get(&self) -> Result<Object<T, E>, E> {
        let mut available = self.inner.available.fetch_sub(1, Ordering::Relaxed);
        let mut size = self.inner.size.load(Ordering::Relaxed);
        let mut obj = Object::new(&self);
        loop {
            if available <= 0 && size < self.inner.max_size {
                // The pool is empty and the max size has not been
                // reached, yet.
                if self.inner.size.fetch_add(1, Ordering::Relaxed) < self.inner.max_size {
                    self.inner.available.fetch_add(1, Ordering::Relaxed);
                    obj.state = ObjectState::Creating;
                    obj.obj = Some(self.inner.manager.create().await?);
                    obj.state = ObjectState::Ready;
                    break;
                } else {
                    self.inner.size.fetch_sub(1, Ordering::Relaxed);
                }
            }
            let inner_obj = self.inner.obj_receiver.lock().await.recv().await.unwrap();
            if let Some(inner_obj) = inner_obj {
                obj.obj = Some(inner_obj);
                obj.state = ObjectState::Recycling;
                if self.inner.manager.recycle(&mut obj).await.is_ok() {
                    obj.state = ObjectState::Ready;
                    break;
                }
                obj.state = ObjectState::New;
            }
            // At this point either no object was received from the channel
            // or recycling the object failed. This means that the object
            // received from the channel was unuseable and the pool size
            // needs to be reduced by one.
            size = self.inner.size.fetch_sub(1, Ordering::Relaxed) - 1;
            available = self.inner.available.fetch_sub(1, Ordering::Relaxed);
        }
        Ok(obj)
    }
    /// Retrieve status of the pool
    pub fn status(&self) -> Status {
        let size = self.inner.size.load(Ordering::Relaxed);
        let available = self.inner.available.load(Ordering::Relaxed);
        Status { size, available }
    }
}