1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
// Copyright 2020 Xavier Gillard
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

//! This module defines some utility types that are convenient to work with
//! but do not belong to the heart of developing an MDD-based optimization
//! solver. In particular, this module defines:
//!   * an iterator to iterate over the 1-bits of a fixed bitset (`BitSetIter`)
//!   * a wrapper type that allows the comparison of two fixed bitsets, on a
//!     lexical basis (`LexBitSet`)
//!   * a typesafe adapter for function/closure pointers, which implements the
//!     `Compare`, `LoadVars`, `VariableHeuristic` and `WidthHeuristic` traits.
//!     This adapter is really a zero-cost abstraction and may be used whenever
//!     you feel it would make sense. This is not going to hamper your perf (`Func`).
use std::cmp::Ordering;
use std::cmp::Ordering::Equal;
use std::iter::Cloned;
use std::slice::Iter;

use bitset_fixed::BitSet;
use compare::Compare;

use crate::core::abstraction::heuristics::{LoadVars, VariableHeuristic, WidthHeuristic};
use crate::core::common::{Layer, Node, Variable, VarSet};
use std::ops::{Index, IndexMut};

/// This structure implements a 2D matrix of size [ n X m ].
///
///
/// # Example
/// ```
/// # use ddo::core::utils::Matrix;
///
/// let mut adjacency = Matrix::new_default(5, 5, None);
///
/// adjacency[(2, 2)] = Some(-5);
/// assert_eq!(Some(-5), adjacency[(2, 2)]);
/// ```
#[derive(Clone)]
pub struct Matrix<T> {
    /// The number of rows
    pub n: usize,
    /// The number of columns
    pub m: usize,
    /// The items of the matrix
    pub data : Vec<T>
}
impl <T : Default + Clone> Matrix<T> {
    /// Allows the creation of a matrix initialized with the default element
    pub fn new(m: usize, n: usize) -> Self {
        Matrix { m, n, data: vec![Default::default(); m * n] }
    }
}
impl <T : Clone> Matrix<T> {
    /// Allows the creation of a matrix initialized with the default element
    pub fn new_default(m: usize, n: usize, item: T) -> Self {
        Matrix { m, n, data: vec![item; m * n] }
    }
}
impl <T> Matrix<T> {
    /// Returns the position (offset in the data) of the given index
    fn pos(&self, idx: (usize, usize)) -> usize {
        self.m * idx.0 + idx.1
    }
}
/// A matrix is typically an item you'll want to adress using 2D position
impl <T> Index<(usize, usize)> for Matrix<T> {
    type Output = T;
    /// It returns a reference to some item from the matrix at the given 2D index
    fn index(&self, idx: (usize, usize)) -> &Self::Output {
        let position = self.pos(idx);
        &self.data[position]
    }
}
impl <T> IndexMut<(usize, usize)> for Matrix<T> {
    /// It returns a mutable reference to some item from the matrix at the given 2D index
    fn index_mut(&mut self, idx: (usize, usize)) -> &mut Self::Output {
        let position = self.pos(idx);
        &mut self.data[position]
    }
}


/// This structure defines an iterator capable of iterating over the 1-bits of
/// a fixed bitset. It uses word representation of the items in the set, so it
/// should be more efficient to use than a crude iteration over the elements of
/// the set.
///
/// # Example
/// ```
/// # use bitset_fixed::BitSet;
/// # use ddo::core::utils::BitSetIter;
///
/// let mut bit_set = BitSet::new(5);
/// bit_set.set(1, true);
/// bit_set.set(2, true);
/// bit_set.set(4, true);
///
/// // Successively prints 1, 2, 4
/// for x in BitSetIter::new(&bit_set) {
///     println!("{}", x);
/// }
/// ```
///
pub struct BitSetIter<'a> {
    /// An iterator over the buffer of words of the bitset
    iter: Cloned<Iter<'a, u64>>,
    /// The current word (or none if we exhausted all iterations)
    word: Option<u64>,
    /// The value of position 0 in the current word
    base: usize,
    /// An offset in the current word
    offset: usize,
}
impl BitSetIter<'_> {
    /// This method creates an iterator for the given bitset from an immutable
    /// reference to that bitset.
    pub fn new(bs: &BitSet) -> BitSetIter {
        let mut iter = bs.buffer().iter().cloned();
        let word = iter.next();
        BitSetIter {iter, word, base: 0, offset: 0}
    }
}
/// `BitSetIter` is an iterator over the one bits of the bitset. As such, it
/// implements the standard `Iterator` trait.
impl Iterator for BitSetIter<'_> {
    type Item = usize;
    /// Returns the nex element from the iteration, or None, if there are no more
    /// elements to iterate upon.
    fn next(&mut self) -> Option<Self::Item> {
        while let Some(w) = self.word {
            if w == 0 || self.offset >= 64 {
                self.word   = self.iter.next();
                self.base  += 64;
                self.offset = 0;
            } else {
                let mut mask = 1_u64 << self.offset as u64;
                while (w & mask) == 0 && self.offset < 64 {
                    mask <<= 1;
                    self.offset += 1;
                }
                if self.offset < 64 {
                    let ret = Some(self.base + self.offset);
                    self.offset += 1;
                    return ret;
                }
            }
        }
        None
    }
}

/// A totally ordered Bitset wrapper. Useful to implement tie break mechanisms.
/// This wrapper orders the bitsets according to the lexical order of their
/// underlying bits.
///
/// # Note:
/// This implementation uses the underlying _words_ representation of the
/// bitsets to perform several comparisons at once. Hence, using a `LexBitSet`
/// should be more efficient than trying to establish the total ordering
/// yourself with a loop on the 1-bits of the two sets.
///
/// # Example
/// ```
/// # use bitset_fixed::BitSet;
/// # use ddo::core::utils::LexBitSet;
///
/// let mut a = BitSet::new(5);
/// let mut b = BitSet::new(5);
///
/// a.set(2, true);  // bits 0..2 match for a and b
/// b.set(2, true);
///
/// a.set(3, false); // a and b diverge on bit 3
/// b.set(3, true);  // and a has a 0 bit in that pos
///
/// a.set(4, true);  // anything that remains after
/// b.set(4, false); // the firs lexicographical difference is ignored
///
/// assert!(LexBitSet(&a) < LexBitSet(&b));
/// ```
///
#[derive(Debug)]
pub struct LexBitSet<'a>(pub &'a BitSet);

/// The `LexBitSet` implements a total order on bitsets. As such, it must
/// implement the standard trait `Ord`.
///
/// # Note:
/// This implementation uses the underlying _words_ representation of the
/// bitsets to perform several comparisons at once. Hence, using a `LexBitSet`
/// should be more efficient than trying to establish the total ordering
/// yourself with a loop on the 1-bits of the two sets.
impl Ord for LexBitSet<'_> {
    fn cmp(&self, other: &Self) -> Ordering {
        let mut x = self.0.buffer().iter().cloned();
        let mut y = other.0.buffer().iter().cloned();
        let end   = x.len().max(y.len());

        for _ in 0..end {
            let xi = x.next().unwrap_or(0);
            let yi = y.next().unwrap_or(0);
            if xi != yi {
                let mut mask = 1_u64;
                for _ in 0..64 {
                    let bit_x = xi & mask;
                    let bit_y = yi & mask;
                    if bit_x != bit_y {
                        return bit_x.cmp(&bit_y);
                    }
                    mask <<= 1;
                }
            }
        }
        Equal
    }
}
/// Because it is a total order, `LexBitSet` must also be a partial order.
/// Hence, it must implement the standard trait `PartialOrd`.
impl PartialOrd for LexBitSet<'_> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}
/// Because `LexBitSet` defines a total order, it makes sense to consider that
/// it also defines an equivalence relation. As such, it implements the standard
/// `Eq` and `PartialEq` traits.
impl Eq for LexBitSet<'_> {}
/// Having `LexBitSet` to implement `PartialEq` means that it _at least_ defines
/// a partial equivalence relation.
impl PartialEq for LexBitSet<'_> {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0 || self.cmp(other) == Equal
    }
}

/// A zero-cost abstraction adapter for function pointers. This is typically
/// useful to pass a pointer to function/closure as an heuristic to use in the
/// solver/mdd configuration.
///
/// Note that, it implements different heuristics trait depending on the signature
/// of the wrapped function F.
#[derive(Clone)]
pub struct Func<F>(pub F);

/// If the function is a node comparator, then `Func` will auto implement the
/// `Compare` trait for that function.
impl <T, F> Compare<Node<T>> for Func<F>
    where F: Clone + Fn(&Node<T>, &Node<T>) -> Ordering {

    fn compare(&self, a: &Node<T>, b: &Node<T>) -> Ordering {
        (self.0)(a, b)
    }
}
/// If the function <F> determines a maximum width given a set of free vars,
/// then `Func` will auto implement `WidthHeuristic` for that function.
impl <F> WidthHeuristic for Func<F>
    where F: Fn(&VarSet) -> usize {

    fn max_width(&self, free_vars: &VarSet) -> usize {
        (self.0)(free_vars)
    }
}
/// Whenever the parameter function <F> of `Func` is a function/closure that
/// possibly returns a variable based on a set of free variables and two layers
/// (current and next), then `Func` will auto implement the `VariableHeuristic`
/// trait for that function.
impl <T, F> VariableHeuristic<T> for Func<F>
    where F: Fn(&VarSet, Layer<'_, T>, Layer<'_, T>) -> Option<Variable> {

    fn next_var(&self, free_vars: &VarSet, current: Layer<'_, T>, next: Layer<'_, T>) -> Option<Variable> {
        (self.0)(free_vars, current, next)
    }
}
/// If <F> is able to extract a set of variables out of a reference to some
/// node, then `Func` will auto implement the `LoadVars` trait for that function.
impl <T, F> LoadVars<T> for Func<F>
    where F: Fn(&Node<T>) -> VarSet {

    fn variables(&self, node: &Node<T>) -> VarSet {
        (self.0)(node)
    }
}

#[cfg(test)]
/// These tests validate the behavior of the bitset iterator `BitSetIter`.
mod tests_bitset_iter {
    use bitset_fixed::BitSet;
    use crate::core::utils::BitSetIter;

    #[test]
    fn bsiter_collect() {
        let mut bit_set = BitSet::new(5);
        bit_set.set(1, true);
        bit_set.set(2, true);
        bit_set.set(4, true);

        let iter  = BitSetIter::new(&bit_set);
        let items = iter.collect::<Vec<usize>>();

        assert_eq!(items, vec![1, 2, 4]);
    }
    #[test]
    fn bsiter_next_normal_case() {
        let mut bit_set = BitSet::new(5);
        bit_set.set(1, true);
        bit_set.set(2, true);
        bit_set.set(4, true);

        let mut iter = BitSetIter::new(&bit_set);
        assert_eq!(Some(1), iter.next());
        assert_eq!(Some(2), iter.next());
        assert_eq!(Some(4), iter.next());
        assert_eq!(None   , iter.next());
    }
    #[test]
    fn bsiter_no_items() {
        let bit_set = BitSet::new(5);
        let mut iter    = BitSetIter::new(&bit_set);

        assert_eq!(None, iter.next());
        assert_eq!(None, iter.next());
        assert_eq!(None, iter.next());
    }
    #[test]
    fn bsiter_mutiple_words() {
        let mut bit_set = BitSet::new(128);
        bit_set.set(  1, true);
        bit_set.set( 50, true);
        bit_set.set( 66, true);
        bit_set.set(100, true);

        let mut iter = BitSetIter::new(&bit_set);
        assert_eq!(Some(  1), iter.next());
        assert_eq!(Some( 50), iter.next());
        assert_eq!(Some( 66), iter.next());
        assert_eq!(Some(100), iter.next());
        assert_eq!(None     , iter.next());
    }
}
#[cfg(test)]
/// These tests validate the behavior of the lexicographically ordered bitsets
/// `LexBitSet`.
mod tests_lexbitset {
    use bitset_fixed::BitSet;
    use crate::core::utils::LexBitSet;

    #[test]
    fn same_size_less_than() {
        let mut a = BitSet::new(200);
        let mut b = BitSet::new(200);

        a.set(2, true);  // bits 0..2 match for a and b
        b.set(2, true);

        a.set(3, false); // a and b diverge on bit 3
        b.set(3, true);  // and a has a 0 bit in that pos

        a.set(4, true);  // anything that remains after
        b.set(4, false); // the firs lexicographical difference is ignored

        a.set(150, true);
        b.set(150, true);

        assert!(LexBitSet(&a) <= LexBitSet(&b));
        assert!(LexBitSet(&a) <  LexBitSet(&b));
    }
    #[test]
    fn same_size_greater_than() {
        let mut a = BitSet::new(200);
        let mut b = BitSet::new(200);

        a.set(2, true);  // bits 0..2 match for a and b
        b.set(2, true);

        a.set(3, false); // a and b diverge on bit 3
        b.set(3, true);  // and a has a 0 bit in that pos

        a.set(4, true);  // anything that remains after
        b.set(4, false); // the firs lexicographical difference is ignored

        a.set(150, true);
        b.set(150, true);

        assert!(LexBitSet(&b) >= LexBitSet(&a));
        assert!(LexBitSet(&b) >  LexBitSet(&a));
    }
    #[test]
    fn same_size_equal() {
        let mut a = BitSet::new(200);
        let mut b = BitSet::new(200);

        a.set(2, true);  // bits 0..2 match for a and b
        b.set(2, true);

        a.set(150, true);
        b.set(150, true);

        assert!(LexBitSet(&a) >= LexBitSet(&b));
        assert!(LexBitSet(&b) >= LexBitSet(&a));

        assert_eq!(LexBitSet(&a), LexBitSet(&b));
        assert_eq!(LexBitSet(&a), LexBitSet(&a));
        assert_eq!(LexBitSet(&b), LexBitSet(&b));
    }

    #[test]
    /// For different sized bitsets, it behaves as though they were padded with
    /// trailing zeroes.
    fn different_sizes_considered_padded_with_zeroes() {
        let mut a = BitSet::new(20);
        let mut b = BitSet::new(200);

        a.set(2, true);  // bits 0..2 match for a and b
        b.set(2, true);

        assert_eq!(LexBitSet(&a), LexBitSet(&b));

        b.set(150, true);
        assert!(LexBitSet(&a) <= LexBitSet(&b));
        assert!(LexBitSet(&a) <  LexBitSet(&b));
    }
}

#[cfg(test)]
mod test_matrix {
    use crate::core::utils::Matrix;
    #[test]
    fn it_is_initialized_with_default_elem() {
        let mat : Matrix<Option<usize>> = Matrix::new(5, 5);

        for i in 0..5 {
            for j in 0..5 {
                assert_eq!(None, mat[(i, j)]);
            }
        }
    }
    #[test]
    fn it_is_initialized_with_given_elem() {
        let mat = Matrix::new_default(5, 5, Some(0));

        for i in 0..5 {
            for j in 0..5 {
                assert_eq!(Some(0), mat[(i, j)]);
            }
        }
    }
    #[test]
    fn it_can_be_accessed_and_mutated_with_2d_position() {
        let mut mat = Matrix::new(5, 5);
        mat[(2, 2)] = Some(-5);

        assert_eq!(Some(-5), mat[(2, 2)]);
    }
}