1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
// Copyright 2021-2022 Alibaba Cloud. All Rights Reserved.
// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the THIRD-PARTY file.

//! Constants and utilities for x86 CPU generic, system and model specific registers.

use std::mem;

use kvm_bindings::{kvm_fpu, kvm_msr_entry, kvm_regs, kvm_sregs, Msrs};
use kvm_ioctls::VcpuFd;
use vm_memory::{Address, Bytes, GuestAddress, GuestMemory};

use super::gdt::kvm_segment_from_gdt;
use super::msr;

/// Non-Executable bit in EFER MSR.
pub const EFER_NX: u64 = 0x800;
/// Long-mode active bit in EFER MSR.
pub const EFER_LMA: u64 = 0x400;
/// Long-mode enable bit in EFER MSR.
pub const EFER_LME: u64 = 0x100;

/// Protection mode enable bit in CR0.
pub const X86_CR0_PE: u64 = 0x1;
/// Paging enable bit in CR0.
pub const X86_CR0_PG: u64 = 0x8000_0000;
/// Physical Address Extension bit in CR4.
pub const X86_CR4_PAE: u64 = 0x20;

/// Errors thrown while setting up x86_64 registers.
#[derive(Debug)]
pub enum Error {
    /// Failed to get SREGs for this CPU.
    GetStatusRegisters(kvm_ioctls::Error),
    /// Failed to set base registers for this CPU.
    SetBaseRegisters(kvm_ioctls::Error),
    /// Failed to configure the FPU.
    SetFPURegisters(kvm_ioctls::Error),
    /// Setting up MSRs failed.
    SetModelSpecificRegisters(kvm_ioctls::Error),
    /// Failed to set all MSRs.
    SetModelSpecificRegistersCount,
    /// Failed to set SREGs for this CPU.
    SetStatusRegisters(kvm_ioctls::Error),
    /// Writing the GDT to RAM failed.
    WriteGDT,
    /// Writing the IDT to RAM failed.
    WriteIDT,
}

type Result<T> = std::result::Result<T, Error>;

/// Configure Floating-Point Unit (FPU) registers for a given CPU.
///
/// # Arguments
///
/// * `vcpu` - Structure for the VCPU that holds the VCPU's fd.
pub fn setup_fpu(vcpu: &VcpuFd) -> Result<()> {
    let fpu: kvm_fpu = kvm_fpu {
        fcw: 0x37f,
        mxcsr: 0x1f80,
        ..Default::default()
    };

    vcpu.set_fpu(&fpu).map_err(Error::SetFPURegisters)
}

/// Configure Model Specific Registers (MSRs) for a given CPU.
///
/// # Arguments
///
/// * `vcpu` - Structure for the VCPU that holds the VCPU's fd.
pub fn setup_msrs(vcpu: &VcpuFd) -> Result<()> {
    let entry_vec = create_msr_entries();
    let kvm_msrs =
        Msrs::from_entries(&entry_vec).map_err(|_| Error::SetModelSpecificRegistersCount)?;

    vcpu.set_msrs(&kvm_msrs)
        .map_err(Error::SetModelSpecificRegisters)
        .and_then(|msrs_written| {
            if msrs_written as u32 != kvm_msrs.as_fam_struct_ref().nmsrs {
                Err(Error::SetModelSpecificRegistersCount)
            } else {
                Ok(msrs_written)
            }
        })?;
    Ok(())
}

/// Configure base registers for a given CPU.
///
/// # Arguments
///
/// * `vcpu` - Structure for the VCPU that holds the VCPU's fd.
/// * `boot_ip` - Starting instruction pointer.
/// * `rsp` - Value for RSP register
/// * `rbp` - Value for RBP register
/// * `rsi` - Value for RSI register
pub fn setup_regs(vcpu: &VcpuFd, boot_ip: u64, rsp: u64, rbp: u64, rsi: u64) -> Result<()> {
    let regs: kvm_regs = kvm_regs {
        rflags: 0x0000_0000_0000_0002u64,
        rip: boot_ip,
        rsp,
        rbp,
        rsi,
        ..Default::default()
    };

    vcpu.set_regs(&regs).map_err(Error::SetBaseRegisters)
}

/// Configures the segment registers for a given CPU.
///
/// # Arguments
///
/// * `mem` - The memory that will be passed to the guest.
/// * `vcpu` - Structure for the VCPU that holds the VCPU's fd.
/// * `pgtable_addr` - Address of the vcpu pgtable.
/// * `gdt_table` - Content of the global descriptor table.
/// * `gdt_addr` - Address of the global descriptor table.
/// * `idt_addr` - Address of the interrupt descriptor table.
pub fn setup_sregs<M: GuestMemory>(
    mem: &M,
    vcpu: &VcpuFd,
    pgtable_addr: GuestAddress,
    gdt_table: &[u64],
    gdt_addr: u64,
    idt_addr: u64,
) -> Result<()> {
    let mut sregs: kvm_sregs = vcpu.get_sregs().map_err(Error::GetStatusRegisters)?;
    configure_segments_and_sregs(mem, &mut sregs, pgtable_addr, gdt_table, gdt_addr, idt_addr)?;
    vcpu.set_sregs(&sregs).map_err(Error::SetStatusRegisters)
}

fn configure_segments_and_sregs<M: GuestMemory>(
    mem: &M,
    sregs: &mut kvm_sregs,
    pgtable_addr: GuestAddress,
    gdt_table: &[u64],
    gdt_addr: u64,
    idt_addr: u64,
) -> Result<()> {
    assert!(gdt_table.len() >= 4);
    let code_seg = kvm_segment_from_gdt(gdt_table[1], 1);
    let data_seg = kvm_segment_from_gdt(gdt_table[2], 2);
    let tss_seg = kvm_segment_from_gdt(gdt_table[3], 3);

    // Write segments
    write_gdt_table(gdt_table, gdt_addr, mem)?;
    sregs.gdt.base = gdt_addr;
    sregs.gdt.limit = (mem::size_of::<u64>() * gdt_table.len()) as u16 - 1;

    write_idt_value(0, idt_addr, mem)?;
    sregs.idt.base = idt_addr;
    sregs.idt.limit = mem::size_of::<u64>() as u16 - 1;

    sregs.cs = code_seg;
    sregs.ds = data_seg;
    sregs.es = data_seg;
    sregs.fs = data_seg;
    sregs.gs = data_seg;
    sregs.ss = data_seg;
    sregs.tr = tss_seg;

    /* 64-bit protected mode */
    sregs.cr0 |= X86_CR0_PE;
    sregs.cr3 = pgtable_addr.raw_value() as u64;
    sregs.cr4 |= X86_CR4_PAE;
    sregs.cr0 |= X86_CR0_PG;
    sregs.efer |= EFER_LME | EFER_LMA;

    Ok(())
}

fn write_gdt_table<M: GuestMemory>(gdt_table: &[u64], gdt_addr: u64, guest_mem: &M) -> Result<()> {
    let boot_gdt_addr = GuestAddress(gdt_addr);
    for (index, entry) in gdt_table.iter().enumerate() {
        let addr = guest_mem
            .checked_offset(boot_gdt_addr, index * mem::size_of::<u64>())
            .ok_or(Error::WriteGDT)?;
        guest_mem
            .write_obj(*entry, addr)
            .map_err(|_| Error::WriteGDT)?;
    }
    Ok(())
}

fn write_idt_value<M: GuestMemory>(idt_table: u64, idt_addr: u64, guest_mem: &M) -> Result<()> {
    let boot_idt_addr = GuestAddress(idt_addr);
    guest_mem
        .write_obj(idt_table, boot_idt_addr)
        .map_err(|_| Error::WriteIDT)
}

#[allow(clippy::vec_init_then_push)]
fn create_msr_entries() -> Vec<kvm_msr_entry> {
    let mut entries = Vec::<kvm_msr_entry>::new();

    entries.push(kvm_msr_entry {
        index: msr::MSR_IA32_SYSENTER_CS,
        data: 0x0,
        ..Default::default()
    });
    entries.push(kvm_msr_entry {
        index: msr::MSR_IA32_SYSENTER_ESP,
        data: 0x0,
        ..Default::default()
    });
    entries.push(kvm_msr_entry {
        index: msr::MSR_IA32_SYSENTER_EIP,
        data: 0x0,
        ..Default::default()
    });
    // x86_64 specific msrs, we only run on x86_64 not x86.
    entries.push(kvm_msr_entry {
        index: msr::MSR_STAR,
        data: 0x0,
        ..Default::default()
    });
    entries.push(kvm_msr_entry {
        index: msr::MSR_CSTAR,
        data: 0x0,
        ..Default::default()
    });
    entries.push(kvm_msr_entry {
        index: msr::MSR_KERNEL_GS_BASE,
        data: 0x0,
        ..Default::default()
    });
    entries.push(kvm_msr_entry {
        index: msr::MSR_SYSCALL_MASK,
        data: 0x0,
        ..Default::default()
    });
    entries.push(kvm_msr_entry {
        index: msr::MSR_LSTAR,
        data: 0x0,
        ..Default::default()
    });
    // end of x86_64 specific code
    entries.push(kvm_msr_entry {
        index: msr::MSR_IA32_TSC,
        data: 0x0,
        ..Default::default()
    });
    entries.push(kvm_msr_entry {
        index: msr::MSR_IA32_MISC_ENABLE,
        data: u64::from(msr::MSR_IA32_MISC_ENABLE_FAST_STRING),
        ..Default::default()
    });

    entries
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::x86_64::gdt::gdt_entry;
    use kvm_ioctls::Kvm;
    use vm_memory::{Bytes, GuestAddress, GuestMemoryMmap};

    const BOOT_GDT_OFFSET: u64 = 0x500;
    const BOOT_IDT_OFFSET: u64 = 0x520;
    const BOOT_STACK_POINTER: u64 = 0x100_0000;
    const ZERO_PAGE_START: u64 = 0x7_C000;
    const BOOT_GDT_MAX: usize = 4;
    const PML4_START: u64 = 0x9000;

    fn create_guest_mem() -> GuestMemoryMmap {
        GuestMemoryMmap::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap()
    }

    fn read_u64(gm: &GuestMemoryMmap, offset: u64) -> u64 {
        let read_addr = GuestAddress(offset as u64);
        gm.read_obj(read_addr).unwrap()
    }

    fn validate_segments_and_sregs(gm: &GuestMemoryMmap, sregs: &kvm_sregs) {
        assert_eq!(0x0, read_u64(gm, BOOT_GDT_OFFSET));
        assert_eq!(0xaf_9b00_0000_ffff, read_u64(gm, BOOT_GDT_OFFSET + 8));
        assert_eq!(0xcf_9300_0000_ffff, read_u64(gm, BOOT_GDT_OFFSET + 16));
        assert_eq!(0x8f_8b00_0000_ffff, read_u64(gm, BOOT_GDT_OFFSET + 24));
        assert_eq!(0x0, read_u64(gm, BOOT_IDT_OFFSET));

        assert_eq!(0, sregs.cs.base);
        assert_eq!(0xfffff, sregs.ds.limit);
        assert_eq!(0x10, sregs.es.selector);
        assert_eq!(1, sregs.fs.present);
        assert_eq!(1, sregs.gs.g);
        assert_eq!(0, sregs.ss.avl);
        assert_eq!(0, sregs.tr.base);
        assert_eq!(0xfffff, sregs.tr.limit);
        assert_eq!(0, sregs.tr.avl);
        assert!(sregs.cr0 & X86_CR0_PE != 0);
        assert!(sregs.efer & EFER_LME != 0 && sregs.efer & EFER_LMA != 0);
    }

    #[test]
    fn test_configure_segments_and_sregs() {
        let mut sregs: kvm_sregs = Default::default();
        let gm = create_guest_mem();
        let gdt_table: [u64; BOOT_GDT_MAX as usize] = [
            gdt_entry(0, 0, 0),            // NULL
            gdt_entry(0xa09b, 0, 0xfffff), // CODE
            gdt_entry(0xc093, 0, 0xfffff), // DATA
            gdt_entry(0x808b, 0, 0xfffff), // TSS
        ];
        configure_segments_and_sregs(
            &gm,
            &mut sregs,
            GuestAddress(PML4_START),
            &gdt_table,
            BOOT_GDT_OFFSET,
            BOOT_IDT_OFFSET,
        )
        .unwrap();

        validate_segments_and_sregs(&gm, &sregs);
    }

    #[test]
    fn test_setup_fpu() {
        let kvm = Kvm::new().unwrap();
        let vm = kvm.create_vm().unwrap();
        let vcpu = vm.create_vcpu(0).unwrap();
        setup_fpu(&vcpu).unwrap();

        let expected_fpu: kvm_fpu = kvm_fpu {
            fcw: 0x37f,
            mxcsr: 0x1f80,
            ..Default::default()
        };
        let actual_fpu: kvm_fpu = vcpu.get_fpu().unwrap();
        assert_eq!(expected_fpu.fcw, actual_fpu.fcw);
        // Setting the mxcsr register from kvm_fpu inside setup_fpu does not influence anything.
        // See 'kvm_arch_vcpu_ioctl_set_fpu' from arch/x86/kvm/x86.c.
        // The mxcsr will stay 0 and the assert below fails. Decide whether or not we should
        // remove it at all.
        // assert!(expected_fpu.mxcsr == actual_fpu.mxcsr);
    }

    #[test]
    #[allow(clippy::cast_ptr_alignment)]
    fn test_setup_msrs() {
        let kvm = Kvm::new().unwrap();
        let vm = kvm.create_vm().unwrap();
        let vcpu = vm.create_vcpu(0).unwrap();
        setup_msrs(&vcpu).unwrap();

        // This test will check against the last MSR entry configured (the tenth one).
        // See create_msr_entries() for details.
        let test_kvm_msrs_entry = [kvm_msr_entry {
            index: msr::MSR_IA32_MISC_ENABLE,
            ..Default::default()
        }];
        let mut kvm_msrs = Msrs::from_entries(&test_kvm_msrs_entry).unwrap();

        // kvm_ioctls::get_msrs() returns the number of msrs that it succeeded in reading.
        // We only want to read one in this test case scenario.
        let read_nmsrs = vcpu.get_msrs(&mut kvm_msrs).unwrap();
        // Validate it only read one.
        assert_eq!(read_nmsrs, 1);

        // Official entries that were setup when we did setup_msrs. We need to assert that the
        // tenth one (i.e the one with index msr_index::MSR_IA32_MISC_ENABLE has the data we
        // expect.
        let entry_vec = create_msr_entries();
        assert_eq!(entry_vec[9], kvm_msrs.as_slice()[0]);
    }

    #[test]
    fn test_setup_regs() {
        let kvm = Kvm::new().unwrap();
        let vm = kvm.create_vm().unwrap();
        let vcpu = vm.create_vcpu(0).unwrap();

        let expected_regs: kvm_regs = kvm_regs {
            rflags: 0x0000_0000_0000_0002u64,
            rip: 1,
            rsp: BOOT_STACK_POINTER as u64,
            rbp: BOOT_STACK_POINTER as u64,
            rsi: ZERO_PAGE_START as u64,
            ..Default::default()
        };

        setup_regs(
            &vcpu,
            expected_regs.rip,
            BOOT_STACK_POINTER,
            BOOT_STACK_POINTER,
            ZERO_PAGE_START,
        )
        .unwrap();

        let actual_regs: kvm_regs = vcpu.get_regs().unwrap();
        assert_eq!(actual_regs, expected_regs);
    }
}