1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Eliminate common sub-expression.

use crate::error::Result;
use crate::execution::context::ExecutionProps;
use crate::logical_plan::plan::{Filter, Projection, Window};
use crate::logical_plan::{
    col,
    plan::{Aggregate, Sort},
    DFField, DFSchema, Expr, ExprRewritable, ExprRewriter, ExprSchemable, ExprVisitable,
    ExpressionVisitor, LogicalPlan, Recursion, RewriteRecursion,
};
use crate::optimizer::optimizer::OptimizerRule;
use crate::optimizer::utils;
use arrow::datatypes::DataType;
use std::collections::{HashMap, HashSet};
use std::sync::Arc;

/// A map from expression's identifier to tuple including
/// - the expression itself (cloned)
/// - counter
/// - DataType of this expression.
type ExprSet = HashMap<Identifier, (Expr, usize, DataType)>;

/// Identifier type. Current implementation use describe of a expression (type String) as
/// Identifier.
///
/// A Identifier should (ideally) be able to "hash", "accumulate", "equal" and "have no
/// collision (as low as possible)"
///
/// Since a identifier is likely to be copied many times, it is better that a identifier
/// is small or "copy". otherwise some kinds of reference count is needed. String description
/// here is not such a good choose.
type Identifier = String;

/// Perform Common Sub-expression Elimination optimization.
///
/// Currently only common sub-expressions within one logical plan will
/// be eliminated.
pub struct CommonSubexprEliminate {}

impl OptimizerRule for CommonSubexprEliminate {
    fn optimize(
        &self,
        plan: &LogicalPlan,
        execution_props: &ExecutionProps,
    ) -> Result<LogicalPlan> {
        optimize(plan, execution_props)
    }

    fn name(&self) -> &str {
        "common_sub_expression_eliminate"
    }
}

impl Default for CommonSubexprEliminate {
    fn default() -> Self {
        Self::new()
    }
}

impl CommonSubexprEliminate {
    #[allow(missing_docs)]
    pub fn new() -> Self {
        Self {}
    }
}

fn optimize(plan: &LogicalPlan, execution_props: &ExecutionProps) -> Result<LogicalPlan> {
    let mut expr_set = ExprSet::new();

    match plan {
        LogicalPlan::Projection(Projection {
            expr,
            input,
            schema,
            alias,
        }) => {
            let arrays = to_arrays(expr, input, &mut expr_set)?;

            let (mut new_expr, new_input) = rewrite_expr(
                &[expr],
                &[&arrays],
                input,
                &mut expr_set,
                schema,
                execution_props,
            )?;

            Ok(LogicalPlan::Projection(Projection {
                expr: new_expr.pop().unwrap(),
                input: Arc::new(new_input),
                schema: schema.clone(),
                alias: alias.clone(),
            }))
        }
        LogicalPlan::Filter(Filter { predicate, input }) => {
            let schemas = plan.all_schemas();
            let all_schema =
                schemas.into_iter().fold(DFSchema::empty(), |mut lhs, rhs| {
                    lhs.merge(rhs);
                    lhs
                });
            let data_type = predicate.get_type(&all_schema)?;

            let mut id_array = vec![];
            expr_to_identifier(predicate, &mut expr_set, &mut id_array, data_type)?;

            let (mut new_expr, new_input) = rewrite_expr(
                &[&[predicate.clone()]],
                &[&[id_array]],
                input,
                &mut expr_set,
                input.schema(),
                execution_props,
            )?;

            Ok(LogicalPlan::Filter(Filter {
                predicate: new_expr.pop().unwrap().pop().unwrap(),
                input: Arc::new(new_input),
            }))
        }
        LogicalPlan::Window(Window {
            input,
            window_expr,
            schema,
        }) => {
            let arrays = to_arrays(window_expr, input, &mut expr_set)?;

            let (mut new_expr, new_input) = rewrite_expr(
                &[window_expr],
                &[&arrays],
                input,
                &mut expr_set,
                schema,
                execution_props,
            )?;

            Ok(LogicalPlan::Window(Window {
                input: Arc::new(new_input),
                window_expr: new_expr.pop().unwrap(),
                schema: schema.clone(),
            }))
        }
        LogicalPlan::Aggregate(Aggregate {
            group_expr,
            aggr_expr,
            input,
            schema,
        }) => {
            let group_arrays = to_arrays(group_expr, input, &mut expr_set)?;
            let aggr_arrays = to_arrays(aggr_expr, input, &mut expr_set)?;

            let (mut new_expr, new_input) = rewrite_expr(
                &[group_expr, aggr_expr],
                &[&group_arrays, &aggr_arrays],
                input,
                &mut expr_set,
                schema,
                execution_props,
            )?;
            // note the reversed pop order.
            let new_aggr_expr = new_expr.pop().unwrap();
            let new_group_expr = new_expr.pop().unwrap();

            Ok(LogicalPlan::Aggregate(Aggregate {
                input: Arc::new(new_input),
                group_expr: new_group_expr,
                aggr_expr: new_aggr_expr,
                schema: schema.clone(),
            }))
        }
        LogicalPlan::Sort(Sort { expr, input }) => {
            let arrays = to_arrays(expr, input, &mut expr_set)?;

            let (mut new_expr, new_input) = rewrite_expr(
                &[expr],
                &[&arrays],
                input,
                &mut expr_set,
                input.schema(),
                execution_props,
            )?;

            Ok(LogicalPlan::Sort(Sort {
                expr: new_expr.pop().unwrap(),
                input: Arc::new(new_input),
            }))
        }
        LogicalPlan::Join { .. }
        | LogicalPlan::CrossJoin(_)
        | LogicalPlan::Repartition(_)
        | LogicalPlan::Union(_)
        | LogicalPlan::TableScan { .. }
        | LogicalPlan::Values(_)
        | LogicalPlan::EmptyRelation(_)
        | LogicalPlan::Limit(_)
        | LogicalPlan::CreateExternalTable(_)
        | LogicalPlan::Explain { .. }
        | LogicalPlan::Analyze { .. }
        | LogicalPlan::CreateMemoryTable(_)
        | LogicalPlan::DropTable(_)
        | LogicalPlan::Extension { .. } => {
            // apply the optimization to all inputs of the plan
            let expr = plan.expressions();
            let inputs = plan.inputs();
            let new_inputs = inputs
                .iter()
                .map(|input_plan| optimize(input_plan, execution_props))
                .collect::<Result<Vec<_>>>()?;

            utils::from_plan(plan, &expr, &new_inputs)
        }
    }
}

fn to_arrays(
    expr: &[Expr],
    input: &LogicalPlan,
    expr_set: &mut ExprSet,
) -> Result<Vec<Vec<(usize, String)>>> {
    expr.iter()
        .map(|e| {
            let data_type = e.get_type(input.schema())?;
            let mut id_array = vec![];
            expr_to_identifier(e, expr_set, &mut id_array, data_type)?;

            Ok(id_array)
        })
        .collect::<Result<Vec<_>>>()
}

/// Build the "intermediate" projection plan that evaluates the extracted common expressions.
///
/// This projection plan will merge all fields in the `input.schema()` into its own schema.
/// Redundant project fields are expected to be removed in other optimize phase (like
/// `projection_push_down`).
fn build_project_plan(
    input: LogicalPlan,
    affected_id: HashSet<Identifier>,
    expr_set: &ExprSet,
) -> Result<LogicalPlan> {
    let mut project_exprs = vec![];
    let mut fields = vec![];

    for id in affected_id {
        let (expr, _, data_type) = expr_set.get(&id).unwrap();
        // todo: check `nullable`
        fields.push(DFField::new(None, &id, data_type.clone(), true));
        project_exprs.push(expr.clone().alias(&id));
    }

    fields.extend_from_slice(input.schema().fields());
    input.schema().fields().iter().for_each(|field| {
        project_exprs.push(Expr::Column(field.qualified_column()));
    });

    let mut schema = DFSchema::new(fields)?;
    schema.merge(input.schema());

    Ok(LogicalPlan::Projection(Projection {
        expr: project_exprs,
        input: Arc::new(input),
        schema: Arc::new(schema),
        alias: None,
    }))
}

#[inline]
fn rewrite_expr(
    exprs_list: &[&[Expr]],
    arrays_list: &[&[Vec<(usize, String)>]],
    input: &LogicalPlan,
    expr_set: &mut ExprSet,
    schema: &DFSchema,
    execution_props: &ExecutionProps,
) -> Result<(Vec<Vec<Expr>>, LogicalPlan)> {
    let mut affected_id = HashSet::<Identifier>::new();

    let rewrote_exprs = exprs_list
        .iter()
        .zip(arrays_list.iter())
        .map(|(exprs, arrays)| {
            exprs
                .iter()
                .cloned()
                .zip(arrays.iter())
                .map(|(expr, id_array)| {
                    replace_common_expr(
                        expr,
                        id_array,
                        expr_set,
                        &mut affected_id,
                        schema,
                    )
                })
                .collect::<Result<Vec<_>>>()
        })
        .collect::<Result<Vec<_>>>()?;

    let mut new_input = optimize(input, execution_props)?;
    if !affected_id.is_empty() {
        new_input = build_project_plan(new_input, affected_id, expr_set)?;
    }

    Ok((rewrote_exprs, new_input))
}

/// Go through an expression tree and generate identifier.
///
/// An identifier contains information of the expression itself and its sub-expression.
/// This visitor implementation use a stack `visit_stack` to track traversal, which
/// lets us know when a sub-tree's visiting is finished. When `pre_visit` is called
/// (traversing to a new node), an `EnterMark` and an `ExprItem` will be pushed into stack.
/// And try to pop out a `EnterMark` on leaving a node (`post_visit()`). All `ExprItem`
/// before the first `EnterMark` is considered to be sub-tree of the leaving node.
///
/// This visitor also records identifier in `id_array`. Makes the following traverse
/// pass can get the identifier of a node without recalculate it. We assign each node
/// in the expr tree a series number, start from 1, maintained by `series_number`.
/// Series number represents the order we left (`post_visit`) a node. Has the property
/// that child node's series number always smaller than parent's. While `id_array` is
/// organized in the order we enter (`pre_visit`) a node. `node_count` helps us to
/// get the index of `id_array` for each node.
///
/// `Expr` without sub-expr (column, literal etc.) will not have identifier
/// because they should not be recognized as common sub-expr.
struct ExprIdentifierVisitor<'a> {
    // param
    expr_set: &'a mut ExprSet,
    /// series number (usize) and identifier.
    id_array: &'a mut Vec<(usize, Identifier)>,
    data_type: DataType,

    // inner states
    visit_stack: Vec<VisitRecord>,
    /// increased in pre_visit, start from 0.
    node_count: usize,
    /// increased in post_visit, start from 1.
    series_number: usize,
}

/// Record item that used when traversing a expression tree.
enum VisitRecord {
    /// `usize` is the monotone increasing series number assigned in pre_visit().
    /// Starts from 0. Is used to index the identifier array `id_array` in post_visit().
    EnterMark(usize),
    /// Accumulated identifier of sub expression.
    ExprItem(Identifier),
}

impl ExprIdentifierVisitor<'_> {
    fn desc_expr(expr: &Expr) -> String {
        let mut desc = String::new();
        match expr {
            Expr::Column(column) => {
                desc.push_str("Column-");
                desc.push_str(&column.flat_name());
            }
            Expr::ScalarVariable(var_names) => {
                desc.push_str("ScalarVariable-");
                desc.push_str(&var_names.join("."));
            }
            Expr::Alias(_, alias) => {
                desc.push_str("Alias-");
                desc.push_str(alias);
            }
            Expr::Literal(value) => {
                desc.push_str("Literal");
                desc.push_str(&value.to_string());
            }
            Expr::BinaryExpr { op, .. } => {
                desc.push_str("BinaryExpr-");
                desc.push_str(&op.to_string());
            }
            Expr::Not(_) => {
                desc.push_str("Not-");
            }
            Expr::IsNotNull(_) => {
                desc.push_str("IsNotNull-");
            }
            Expr::IsNull(_) => {
                desc.push_str("IsNull-");
            }
            Expr::Negative(_) => {
                desc.push_str("Negative-");
            }
            Expr::Between { negated, .. } => {
                desc.push_str("Between-");
                desc.push_str(&negated.to_string());
            }
            Expr::Case { .. } => {
                desc.push_str("Case-");
            }
            Expr::Cast { data_type, .. } => {
                desc.push_str("Cast-");
                desc.push_str(&format!("{:?}", data_type));
            }
            Expr::TryCast { data_type, .. } => {
                desc.push_str("TryCast-");
                desc.push_str(&format!("{:?}", data_type));
            }
            Expr::Sort {
                asc, nulls_first, ..
            } => {
                desc.push_str("Sort-");
                desc.push_str(&format!("{}{}", asc, nulls_first));
            }
            Expr::ScalarFunction { fun, .. } => {
                desc.push_str("ScalarFunction-");
                desc.push_str(&fun.to_string());
            }
            Expr::ScalarUDF { fun, .. } => {
                desc.push_str("ScalarUDF-");
                desc.push_str(&fun.name);
            }
            Expr::WindowFunction {
                fun, window_frame, ..
            } => {
                desc.push_str("WindowFunction-");
                desc.push_str(&fun.to_string());
                desc.push_str(&format!("{:?}", window_frame));
            }
            Expr::AggregateFunction { fun, distinct, .. } => {
                desc.push_str("AggregateFunction-");
                desc.push_str(&fun.to_string());
                desc.push_str(&distinct.to_string());
            }
            Expr::AggregateUDF { fun, .. } => {
                desc.push_str("AggregateUDF-");
                desc.push_str(&fun.name);
            }
            Expr::InList { negated, .. } => {
                desc.push_str("InList-");
                desc.push_str(&negated.to_string());
            }
            Expr::Wildcard => {
                desc.push_str("Wildcard-");
            }
            Expr::GetIndexedField { key, .. } => {
                desc.push_str("GetIndexedField-");
                desc.push_str(&key.to_string());
            }
        }

        desc
    }

    /// Find the first `EnterMark` in the stack, and accumulates every `ExprItem`
    /// before it.
    fn pop_enter_mark(&mut self) -> (usize, Identifier) {
        let mut desc = String::new();

        while let Some(item) = self.visit_stack.pop() {
            match item {
                VisitRecord::EnterMark(idx) => {
                    return (idx, desc);
                }
                VisitRecord::ExprItem(s) => {
                    desc.push_str(&s);
                }
            }
        }

        unreachable!("Enter mark should paired with node number");
    }
}

impl ExpressionVisitor for ExprIdentifierVisitor<'_> {
    fn pre_visit(mut self, _expr: &Expr) -> Result<Recursion<Self>> {
        self.visit_stack
            .push(VisitRecord::EnterMark(self.node_count));
        self.node_count += 1;
        // put placeholder
        self.id_array.push((0, "".to_string()));
        Ok(Recursion::Continue(self))
    }

    fn post_visit(mut self, expr: &Expr) -> Result<Self> {
        self.series_number += 1;

        let (idx, sub_expr_desc) = self.pop_enter_mark();
        // skip exprs should not be recognize.
        if matches!(
            expr,
            Expr::Literal(..)
                | Expr::Column(..)
                | Expr::ScalarVariable(..)
                | Expr::Alias(..)
                | Expr::Sort { .. }
                | Expr::Wildcard
        ) {
            self.id_array[idx].0 = self.series_number;
            let desc = Self::desc_expr(expr);
            self.visit_stack.push(VisitRecord::ExprItem(desc));
            return Ok(self);
        }
        let mut desc = Self::desc_expr(expr);
        desc.push_str(&sub_expr_desc);

        self.id_array[idx] = (self.series_number, desc.clone());
        self.visit_stack.push(VisitRecord::ExprItem(desc.clone()));
        let data_type = self.data_type.clone();
        self.expr_set
            .entry(desc)
            .or_insert_with(|| (expr.clone(), 0, data_type))
            .1 += 1;
        Ok(self)
    }
}

/// Go through an expression tree and generate identifier for every node in this tree.
fn expr_to_identifier(
    expr: &Expr,
    expr_set: &mut ExprSet,
    id_array: &mut Vec<(usize, Identifier)>,
    data_type: DataType,
) -> Result<()> {
    expr.accept(ExprIdentifierVisitor {
        expr_set,
        id_array,
        data_type,
        visit_stack: vec![],
        node_count: 0,
        series_number: 0,
    })?;

    Ok(())
}

/// Rewrite expression by replacing detected common sub-expression with
/// the corresponding temporary column name. That column contains the
/// evaluate result of replaced expression.
struct CommonSubexprRewriter<'a> {
    expr_set: &'a mut ExprSet,
    id_array: &'a [(usize, Identifier)],
    /// Which identifier is replaced.
    affected_id: &'a mut HashSet<Identifier>,
    schema: &'a DFSchema,

    /// the max series number we have rewritten. Other expression nodes
    /// with smaller series number is already replaced and shouldn't
    /// do anything with them.
    max_series_number: usize,
    /// current node's information's index in `id_array`.
    curr_index: usize,
}

impl ExprRewriter for CommonSubexprRewriter<'_> {
    fn pre_visit(&mut self, _: &Expr) -> Result<RewriteRecursion> {
        if self.curr_index >= self.id_array.len()
            || self.max_series_number > self.id_array[self.curr_index].0
        {
            return Ok(RewriteRecursion::Stop);
        }

        let curr_id = &self.id_array[self.curr_index].1;
        // skip `Expr`s without identifier (empty identifier).
        if curr_id.is_empty() {
            self.curr_index += 1;
            return Ok(RewriteRecursion::Skip);
        }
        let (_, counter, _) = self.expr_set.get(curr_id).unwrap();
        if *counter > 1 {
            self.affected_id.insert(curr_id.clone());
            Ok(RewriteRecursion::Mutate)
        } else {
            self.curr_index += 1;
            Ok(RewriteRecursion::Skip)
        }
    }

    fn mutate(&mut self, expr: Expr) -> Result<Expr> {
        // This expr tree is finished.
        if self.curr_index >= self.id_array.len() {
            return Ok(expr);
        }

        let (series_number, id) = &self.id_array[self.curr_index];
        self.curr_index += 1;
        // Skip sub-node of a replaced tree, or without identifier, or is not repeated expr.
        if *series_number < self.max_series_number
            || id.is_empty()
            || self.expr_set.get(id).unwrap().1 <= 1
        {
            return Ok(expr);
        }

        self.max_series_number = *series_number;
        // step index to skip all sub-node (which has smaller series number).
        while self.curr_index < self.id_array.len()
            && *series_number > self.id_array[self.curr_index].0
        {
            self.curr_index += 1;
        }

        let expr_name = expr.name(self.schema)?;
        // Alias this `Column` expr to it original "expr name",
        // `projection_push_down` optimizer use "expr name" to eliminate useless
        // projections.
        Ok(col(id).alias(&expr_name))
    }
}

fn replace_common_expr(
    expr: Expr,
    id_array: &[(usize, Identifier)],
    expr_set: &mut ExprSet,
    affected_id: &mut HashSet<Identifier>,
    schema: &DFSchema,
) -> Result<Expr> {
    expr.rewrite(&mut CommonSubexprRewriter {
        expr_set,
        id_array,
        affected_id,
        schema,
        max_series_number: 0,
        curr_index: 0,
    })
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::logical_plan::{
        avg, binary_expr, col, lit, sum, LogicalPlanBuilder, Operator,
    };
    use crate::test::*;
    use std::iter;

    fn assert_optimized_plan_eq(plan: &LogicalPlan, expected: &str) {
        let optimizer = CommonSubexprEliminate {};
        let optimized_plan = optimizer
            .optimize(plan, &ExecutionProps::new())
            .expect("failed to optimize plan");
        let formatted_plan = format!("{:?}", optimized_plan);
        assert_eq!(formatted_plan, expected);
    }

    #[test]
    fn id_array_visitor() -> Result<()> {
        let expr = binary_expr(
            binary_expr(
                sum(binary_expr(col("a"), Operator::Plus, lit("1"))),
                Operator::Minus,
                avg(col("c")),
            ),
            Operator::Multiply,
            lit(2),
        );

        let mut id_array = vec![];
        expr_to_identifier(&expr, &mut HashMap::new(), &mut id_array, DataType::Int64)?;

        let expected = vec![
            (9, "BinaryExpr-*Literal2BinaryExpr--AggregateFunction-AVGfalseColumn-cAggregateFunction-SUMfalseBinaryExpr-+Literal1Column-a"),
            (7, "BinaryExpr--AggregateFunction-AVGfalseColumn-cAggregateFunction-SUMfalseBinaryExpr-+Literal1Column-a"),
            (4, "AggregateFunction-SUMfalseBinaryExpr-+Literal1Column-a"), (3, "BinaryExpr-+Literal1Column-a"),
            (1, ""),
            (2, ""),
            (6, "AggregateFunction-AVGfalseColumn-c"),
            (5, ""),
            (8, ""),
        ]
        .into_iter()
        .map(|(number, id)| (number, id.into()))
        .collect::<Vec<_>>();
        assert_eq!(id_array, expected);

        Ok(())
    }

    #[test]
    fn tpch_q1_simplified() -> Result<()> {
        // SQL:
        //  select
        //      sum(a * (1 - b)),
        //      sum(a * (1 - b) * (1 + c))
        //  from T;
        //
        // The manual assembled logical plan don't contains the outermost `Projection`.

        let table_scan = test_table_scan()?;

        let plan = LogicalPlanBuilder::from(table_scan)
            .aggregate(
                iter::empty::<Expr>(),
                vec![
                    sum(binary_expr(
                        col("a"),
                        Operator::Multiply,
                        binary_expr(lit(1), Operator::Minus, col("b")),
                    )),
                    sum(binary_expr(
                        binary_expr(
                            col("a"),
                            Operator::Multiply,
                            binary_expr(lit(1), Operator::Minus, col("b")),
                        ),
                        Operator::Multiply,
                        binary_expr(lit(1), Operator::Plus, col("c")),
                    )),
                ],
            )?
            .build()?;

        let expected = "Aggregate: groupBy=[[]], aggr=[[SUM(#BinaryExpr-*BinaryExpr--Column-test.bLiteral1Column-test.a AS test.a * Int32(1) - test.b), SUM(#BinaryExpr-*BinaryExpr--Column-test.bLiteral1Column-test.a AS test.a * Int32(1) - test.b * Int32(1) + #test.c)]]\
        \n  Projection: #test.a * Int32(1) - #test.b AS BinaryExpr-*BinaryExpr--Column-test.bLiteral1Column-test.a, #test.a, #test.b, #test.c\
        \n    TableScan: test projection=None";

        assert_optimized_plan_eq(&plan, expected);

        Ok(())
    }

    #[test]
    fn aggregate() -> Result<()> {
        let table_scan = test_table_scan()?;

        let plan = LogicalPlanBuilder::from(table_scan)
            .aggregate(
                iter::empty::<Expr>(),
                vec![
                    binary_expr(lit(1), Operator::Plus, avg(col("a"))),
                    binary_expr(lit(1), Operator::Minus, avg(col("a"))),
                ],
            )?
            .build()?;

        let expected = "Aggregate: groupBy=[[]], aggr=[[Int32(1) + #AggregateFunction-AVGfalseColumn-test.a AS AVG(test.a), Int32(1) - #AggregateFunction-AVGfalseColumn-test.a AS AVG(test.a)]]\
        \n  Projection: AVG(#test.a) AS AggregateFunction-AVGfalseColumn-test.a, #test.a, #test.b, #test.c\
        \n    TableScan: test projection=None";

        assert_optimized_plan_eq(&plan, expected);

        Ok(())
    }

    #[test]
    fn subexpr_in_same_order() -> Result<()> {
        let table_scan = test_table_scan()?;

        let plan = LogicalPlanBuilder::from(table_scan)
            .project(vec![
                binary_expr(lit(1), Operator::Plus, col("a")).alias("first"),
                binary_expr(lit(1), Operator::Plus, col("a")).alias("second"),
            ])?
            .build()?;

        let expected = "Projection: #BinaryExpr-+Column-test.aLiteral1 AS Int32(1) + test.a AS first, #BinaryExpr-+Column-test.aLiteral1 AS Int32(1) + test.a AS second\
        \n  Projection: Int32(1) + #test.a AS BinaryExpr-+Column-test.aLiteral1, #test.a, #test.b, #test.c\
        \n    TableScan: test projection=None";

        assert_optimized_plan_eq(&plan, expected);

        Ok(())
    }

    #[test]
    fn subexpr_in_different_order() -> Result<()> {
        let table_scan = test_table_scan()?;

        let plan = LogicalPlanBuilder::from(table_scan)
            .project(vec![
                binary_expr(lit(1), Operator::Plus, col("a")),
                binary_expr(col("a"), Operator::Plus, lit(1)),
            ])?
            .build()?;

        let expected = "Projection: Int32(1) + #test.a, #test.a + Int32(1)\
        \n  TableScan: test projection=None";

        assert_optimized_plan_eq(&plan, expected);

        Ok(())
    }

    #[test]
    fn cross_plans_subexpr() -> Result<()> {
        let table_scan = test_table_scan()?;

        let plan = LogicalPlanBuilder::from(table_scan)
            .project(vec![binary_expr(lit(1), Operator::Plus, col("a"))])?
            .project(vec![binary_expr(lit(1), Operator::Plus, col("a"))])?
            .build()?;

        let expected = "Projection: #Int32(1) + test.a\
        \n  Projection: Int32(1) + #test.a\
        \n    TableScan: test projection=None";

        assert_optimized_plan_eq(&plan, expected);

        Ok(())
    }
}