1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines the projection execution plan. A projection determines which columns or expressions
//! are returned from a query. The SQL statement `SELECT a, b, a+b FROM t1` is an example
//! of a projection on table `t1` where the expressions `a`, `b`, and `a+b` are the
//! projection expressions. `SELECT` without `FROM` will only evaluate expressions.

use std::any::Any;
use std::collections::HashMap;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};

use crate::physical_plan::{
    ColumnStatistics, DisplayFormatType, EquivalenceProperties, ExecutionPlan,
    Partitioning, PhysicalExpr,
};
use arrow::datatypes::{Field, Schema, SchemaRef};
use arrow::record_batch::{RecordBatch, RecordBatchOptions};
use datafusion_common::Result;
use datafusion_execution::TaskContext;
use futures::stream::{Stream, StreamExt};
use log::trace;

use super::expressions::{Column, PhysicalSortExpr};
use super::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
use super::{RecordBatchStream, SendableRecordBatchStream, Statistics};

use datafusion_physical_expr::{
    normalize_out_expr_with_columns_map, project_equivalence_properties,
    project_ordering_equivalence_properties, OrderingEquivalenceProperties,
};

/// Execution plan for a projection
#[derive(Debug)]
pub struct ProjectionExec {
    /// The projection expressions stored as tuples of (expression, output column name)
    pub(crate) expr: Vec<(Arc<dyn PhysicalExpr>, String)>,
    /// The schema once the projection has been applied to the input
    schema: SchemaRef,
    /// The input plan
    input: Arc<dyn ExecutionPlan>,
    /// The output ordering
    output_ordering: Option<Vec<PhysicalSortExpr>>,
    /// The columns map used to normalize out expressions like Partitioning and PhysicalSortExpr
    /// The key is the column from the input schema and the values are the columns from the output schema
    columns_map: HashMap<Column, Vec<Column>>,
    /// Execution metrics
    metrics: ExecutionPlanMetricsSet,
}

impl ProjectionExec {
    /// Create a projection on an input
    pub fn try_new(
        expr: Vec<(Arc<dyn PhysicalExpr>, String)>,
        input: Arc<dyn ExecutionPlan>,
    ) -> Result<Self> {
        let input_schema = input.schema();

        let fields: Result<Vec<Field>> = expr
            .iter()
            .map(|(e, name)| {
                let mut field = Field::new(
                    name,
                    e.data_type(&input_schema)?,
                    e.nullable(&input_schema)?,
                );
                field.set_metadata(
                    get_field_metadata(e, &input_schema).unwrap_or_default(),
                );

                Ok(field)
            })
            .collect();

        let schema = Arc::new(Schema::new_with_metadata(
            fields?,
            input_schema.metadata().clone(),
        ));

        // construct a map from the input columns to the output columns of the Projection
        let mut columns_map: HashMap<Column, Vec<Column>> = HashMap::new();
        for (expression, name) in expr.iter() {
            if let Some(column) = expression.as_any().downcast_ref::<Column>() {
                // For some executors, logical and physical plan schema fields
                // are not the same. The information in a `Column` comes from
                // the logical plan schema. Therefore, to produce correct results
                // we use the field in the input schema with the same index. This
                // corresponds to the physical plan `Column`.
                let idx = column.index();
                let matching_input_field = input_schema.field(idx);
                let matching_input_column = Column::new(matching_input_field.name(), idx);
                let new_col_idx = schema.index_of(name)?;
                let entry = columns_map
                    .entry(matching_input_column)
                    .or_insert_with(Vec::new);
                entry.push(Column::new(name, new_col_idx));
            };
        }

        // Output Ordering need to respect the alias
        let child_output_ordering = input.output_ordering();
        let output_ordering = match child_output_ordering {
            Some(sort_exprs) => {
                let normalized_exprs = sort_exprs
                    .iter()
                    .map(|sort_expr| {
                        let expr = normalize_out_expr_with_columns_map(
                            sort_expr.expr.clone(),
                            &columns_map,
                        );
                        PhysicalSortExpr {
                            expr,
                            options: sort_expr.options,
                        }
                    })
                    .collect::<Vec<_>>();
                Some(normalized_exprs)
            }
            None => None,
        };

        Ok(Self {
            expr,
            schema,
            input: input.clone(),
            output_ordering,
            columns_map,
            metrics: ExecutionPlanMetricsSet::new(),
        })
    }

    /// The projection expressions stored as tuples of (expression, output column name)
    pub fn expr(&self) -> &[(Arc<dyn PhysicalExpr>, String)] {
        &self.expr
    }

    /// The input plan
    pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
        &self.input
    }
}

impl ExecutionPlan for ProjectionExec {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    /// Get the schema for this execution plan
    fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }

    /// Specifies whether this plan generates an infinite stream of records.
    /// If the plan does not support pipelining, but its input(s) are
    /// infinite, returns an error to indicate this.
    fn unbounded_output(&self, children: &[bool]) -> Result<bool> {
        Ok(children[0])
    }

    fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
        vec![self.input.clone()]
    }

    /// Get the output partitioning of this plan
    fn output_partitioning(&self) -> Partitioning {
        // Output partition need to respect the alias
        let input_partition = self.input.output_partitioning();
        match input_partition {
            Partitioning::Hash(exprs, part) => {
                let normalized_exprs = exprs
                    .into_iter()
                    .map(|expr| {
                        normalize_out_expr_with_columns_map(expr, &self.columns_map)
                    })
                    .collect::<Vec<_>>();

                Partitioning::Hash(normalized_exprs, part)
            }
            _ => input_partition,
        }
    }

    fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> {
        self.output_ordering.as_deref()
    }

    fn maintains_input_order(&self) -> Vec<bool> {
        // tell optimizer this operator doesn't reorder its input
        vec![true]
    }

    fn equivalence_properties(&self) -> EquivalenceProperties {
        let mut new_properties = EquivalenceProperties::new(self.schema());
        project_equivalence_properties(
            self.input.equivalence_properties(),
            &self.columns_map,
            &mut new_properties,
        );
        new_properties
    }

    fn ordering_equivalence_properties(&self) -> OrderingEquivalenceProperties {
        let mut new_properties = OrderingEquivalenceProperties::new(self.schema());
        project_ordering_equivalence_properties(
            self.input.ordering_equivalence_properties(),
            &self.columns_map,
            &mut new_properties,
        );
        new_properties
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        Ok(Arc::new(ProjectionExec::try_new(
            self.expr.clone(),
            children[0].clone(),
        )?))
    }

    fn benefits_from_input_partitioning(&self) -> bool {
        let all_column_expr = self
            .expr
            .iter()
            .all(|(e, _)| e.as_any().downcast_ref::<Column>().is_some());
        // If expressions are all column_expr, then all computations in this projection are reorder or rename,
        // and projection would not benefit from the repartition, benefits_from_input_partitioning will return false.
        !all_column_expr
    }

    fn execute(
        &self,
        partition: usize,
        context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        trace!("Start ProjectionExec::execute for partition {} of context session_id {} and task_id {:?}", partition, context.session_id(), context.task_id());
        Ok(Box::pin(ProjectionStream {
            schema: self.schema.clone(),
            expr: self.expr.iter().map(|x| x.0.clone()).collect(),
            input: self.input.execute(partition, context)?,
            baseline_metrics: BaselineMetrics::new(&self.metrics, partition),
        }))
    }

    fn fmt_as(
        &self,
        t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                let expr: Vec<String> = self
                    .expr
                    .iter()
                    .map(|(e, alias)| {
                        let e = e.to_string();
                        if &e != alias {
                            format!("{e} as {alias}")
                        } else {
                            e
                        }
                    })
                    .collect();

                write!(f, "ProjectionExec: expr=[{}]", expr.join(", "))
            }
        }
    }

    fn metrics(&self) -> Option<MetricsSet> {
        Some(self.metrics.clone_inner())
    }

    fn statistics(&self) -> Statistics {
        stats_projection(
            self.input.statistics(),
            self.expr.iter().map(|(e, _)| Arc::clone(e)),
        )
    }
}

/// If e is a direct column reference, returns the field level
/// metadata for that field, if any. Otherwise returns None
fn get_field_metadata(
    e: &Arc<dyn PhysicalExpr>,
    input_schema: &Schema,
) -> Option<HashMap<String, String>> {
    let name = if let Some(column) = e.as_any().downcast_ref::<Column>() {
        column.name()
    } else {
        return None;
    };

    input_schema
        .field_with_name(name)
        .ok()
        .map(|f| f.metadata().clone())
}

fn stats_projection(
    stats: Statistics,
    exprs: impl Iterator<Item = Arc<dyn PhysicalExpr>>,
) -> Statistics {
    let column_statistics = stats.column_statistics.map(|input_col_stats| {
        exprs
            .map(|e| {
                if let Some(col) = e.as_any().downcast_ref::<Column>() {
                    input_col_stats[col.index()].clone()
                } else {
                    // TODO stats: estimate more statistics from expressions
                    // (expressions should compute their statistics themselves)
                    ColumnStatistics::default()
                }
            })
            .collect()
    });

    Statistics {
        is_exact: stats.is_exact,
        num_rows: stats.num_rows,
        column_statistics,
        // TODO stats: knowing the type of the new columns we can guess the output size
        total_byte_size: None,
    }
}

impl ProjectionStream {
    fn batch_project(&self, batch: &RecordBatch) -> Result<RecordBatch> {
        // records time on drop
        let _timer = self.baseline_metrics.elapsed_compute().timer();
        let arrays = self
            .expr
            .iter()
            .map(|expr| expr.evaluate(batch))
            .map(|r| r.map(|v| v.into_array(batch.num_rows())))
            .collect::<Result<Vec<_>>>()?;

        if arrays.is_empty() {
            let options =
                RecordBatchOptions::new().with_row_count(Some(batch.num_rows()));
            RecordBatch::try_new_with_options(self.schema.clone(), arrays, &options)
                .map_err(Into::into)
        } else {
            RecordBatch::try_new(self.schema.clone(), arrays).map_err(Into::into)
        }
    }
}

/// Projection iterator
struct ProjectionStream {
    schema: SchemaRef,
    expr: Vec<Arc<dyn PhysicalExpr>>,
    input: SendableRecordBatchStream,
    baseline_metrics: BaselineMetrics,
}

impl Stream for ProjectionStream {
    type Item = Result<RecordBatch>;

    fn poll_next(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Self::Item>> {
        let poll = self.input.poll_next_unpin(cx).map(|x| match x {
            Some(Ok(batch)) => Some(self.batch_project(&batch)),
            other => other,
        });

        self.baseline_metrics.record_poll(poll)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        // same number of record batches
        self.input.size_hint()
    }
}

impl RecordBatchStream for ProjectionStream {
    /// Get the schema
    fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }
}

#[cfg(test)]
mod tests {

    use super::*;
    use crate::physical_plan::common::collect;
    use crate::physical_plan::expressions::{self, col};
    use crate::prelude::SessionContext;
    use crate::test::{self};
    use crate::test_util;
    use datafusion_common::ScalarValue;
    use datafusion_expr::Operator;
    use datafusion_physical_expr::expressions::binary;
    use futures::future;

    // Create a binary expression without coercion. Used here when we do not want to coerce the expressions
    // to valid types. Usage can result in an execution (after plan) error.
    fn binary_simple(
        l: Arc<dyn PhysicalExpr>,
        op: Operator,
        r: Arc<dyn PhysicalExpr>,
        input_schema: &Schema,
    ) -> Arc<dyn PhysicalExpr> {
        binary(l, op, r, input_schema).unwrap()
    }

    #[tokio::test]
    async fn project_first_column() -> Result<()> {
        let session_ctx = SessionContext::new();
        let task_ctx = session_ctx.task_ctx();
        let schema = test_util::aggr_test_schema();

        let partitions = 4;
        let csv = test::scan_partitioned_csv(partitions)?;

        // pick column c1 and name it column c1 in the output schema
        let projection =
            ProjectionExec::try_new(vec![(col("c1", &schema)?, "c1".to_string())], csv)?;

        let col_field = projection.schema.field(0);
        let col_metadata = col_field.metadata();
        let data: &str = &col_metadata["testing"];
        assert_eq!(data, "test");

        let mut partition_count = 0;
        let mut row_count = 0;
        for partition in 0..projection.output_partitioning().partition_count() {
            partition_count += 1;
            let stream = projection.execute(partition, task_ctx.clone())?;

            row_count += stream
                .map(|batch| {
                    let batch = batch.unwrap();
                    assert_eq!(1, batch.num_columns());
                    batch.num_rows()
                })
                .fold(0, |acc, x| future::ready(acc + x))
                .await;
        }
        assert_eq!(partitions, partition_count);
        assert_eq!(100, row_count);

        Ok(())
    }

    #[tokio::test]
    async fn project_input_not_partitioning() -> Result<()> {
        let schema = test_util::aggr_test_schema();

        let partitions = 4;
        let csv = test::scan_partitioned_csv(partitions)?;

        // pick column c1 and name it column c1 in the output schema
        let projection =
            ProjectionExec::try_new(vec![(col("c1", &schema)?, "c1".to_string())], csv)?;
        assert!(!projection.benefits_from_input_partitioning());
        Ok(())
    }

    #[tokio::test]
    async fn project_input_partitioning() -> Result<()> {
        let schema = test_util::aggr_test_schema();

        let partitions = 4;
        let csv = test::scan_partitioned_csv(partitions)?;

        let c1 = col("c2", &schema).unwrap();
        let c2 = col("c9", &schema).unwrap();
        let c1_plus_c2 = binary_simple(c1, Operator::Plus, c2, &schema);

        let projection =
            ProjectionExec::try_new(vec![(c1_plus_c2, "c2 + c9".to_string())], csv)?;

        assert!(projection.benefits_from_input_partitioning());
        Ok(())
    }

    #[tokio::test]
    async fn project_no_column() -> Result<()> {
        let session_ctx = SessionContext::new();
        let task_ctx = session_ctx.task_ctx();

        let csv = test::scan_partitioned_csv(1)?;
        let expected = collect(csv.execute(0, task_ctx.clone())?).await.unwrap();

        let projection = ProjectionExec::try_new(vec![], csv)?;
        let stream = projection.execute(0, task_ctx.clone())?;
        let output = collect(stream).await.unwrap();
        assert_eq!(output.len(), expected.len());

        Ok(())
    }

    #[tokio::test]
    async fn test_stats_projection_columns_only() {
        let source = Statistics {
            is_exact: true,
            num_rows: Some(5),
            total_byte_size: Some(23),
            column_statistics: Some(vec![
                ColumnStatistics {
                    distinct_count: Some(5),
                    max_value: Some(ScalarValue::Int64(Some(21))),
                    min_value: Some(ScalarValue::Int64(Some(-4))),
                    null_count: Some(0),
                },
                ColumnStatistics {
                    distinct_count: Some(1),
                    max_value: Some(ScalarValue::Utf8(Some(String::from("x")))),
                    min_value: Some(ScalarValue::Utf8(Some(String::from("a")))),
                    null_count: Some(3),
                },
                ColumnStatistics {
                    distinct_count: None,
                    max_value: Some(ScalarValue::Float32(Some(1.1))),
                    min_value: Some(ScalarValue::Float32(Some(0.1))),
                    null_count: None,
                },
            ]),
        };

        let exprs: Vec<Arc<dyn PhysicalExpr>> = vec![
            Arc::new(expressions::Column::new("col1", 1)),
            Arc::new(expressions::Column::new("col0", 0)),
        ];

        let result = stats_projection(source, exprs.into_iter());

        let expected = Statistics {
            is_exact: true,
            num_rows: Some(5),
            total_byte_size: None,
            column_statistics: Some(vec![
                ColumnStatistics {
                    distinct_count: Some(1),
                    max_value: Some(ScalarValue::Utf8(Some(String::from("x")))),
                    min_value: Some(ScalarValue::Utf8(Some(String::from("a")))),
                    null_count: Some(3),
                },
                ColumnStatistics {
                    distinct_count: Some(5),
                    max_value: Some(ScalarValue::Int64(Some(21))),
                    min_value: Some(ScalarValue::Int64(Some(-4))),
                    null_count: Some(0),
                },
            ]),
        };

        assert_eq!(result, expected);
    }
}