1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Execution plan for reading in-memory batches of data

use std::any::Any;
use std::fmt;
use std::sync::Arc;
use std::task::{Context, Poll};

use super::expressions::PhysicalSortExpr;
use super::{
    common, DisplayAs, DisplayFormatType, ExecutionMode, ExecutionPlan, Partitioning,
    PlanProperties, RecordBatchStream, SendableRecordBatchStream, Statistics,
};

use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use datafusion_common::{internal_err, project_schema, Result};
use datafusion_execution::memory_pool::MemoryReservation;
use datafusion_execution::TaskContext;
use datafusion_physical_expr::{EquivalenceProperties, LexOrdering};

use futures::Stream;

/// Execution plan for reading in-memory batches of data
pub struct MemoryExec {
    /// The partitions to query
    partitions: Vec<Vec<RecordBatch>>,
    /// Schema representing the data before projection
    schema: SchemaRef,
    /// Schema representing the data after the optional projection is applied
    projected_schema: SchemaRef,
    /// Optional projection
    projection: Option<Vec<usize>>,
    // Sort information: one or more equivalent orderings
    sort_information: Vec<LexOrdering>,
    cache: PlanProperties,
    /// if partition sizes should be displayed
    show_sizes: bool,
}

impl fmt::Debug for MemoryExec {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "partitions: [...]")?;
        write!(f, "schema: {:?}", self.projected_schema)?;
        write!(f, "projection: {:?}", self.projection)?;
        if let Some(sort_info) = &self.sort_information.first() {
            write!(f, ", output_ordering: {:?}", sort_info)?;
        }
        Ok(())
    }
}

impl DisplayAs for MemoryExec {
    fn fmt_as(
        &self,
        t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                let partition_sizes: Vec<_> =
                    self.partitions.iter().map(|b| b.len()).collect();

                let output_ordering = self
                    .sort_information
                    .first()
                    .map(|output_ordering| {
                        format!(
                            ", output_ordering={}",
                            PhysicalSortExpr::format_list(output_ordering)
                        )
                    })
                    .unwrap_or_default();

                if self.show_sizes {
                    write!(
                        f,
                        "MemoryExec: partitions={}, partition_sizes={partition_sizes:?}{output_ordering}",
                        partition_sizes.len(),
                    )
                } else {
                    write!(f, "MemoryExec: partitions={}", partition_sizes.len(),)
                }
            }
        }
    }
}

impl ExecutionPlan for MemoryExec {
    fn name(&self) -> &'static str {
        "MemoryExec"
    }

    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.cache
    }

    fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
        // this is a leaf node and has no children
        vec![]
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        // MemoryExec has no children
        if children.is_empty() {
            Ok(self)
        } else {
            internal_err!("Children cannot be replaced in {self:?}")
        }
    }

    fn execute(
        &self,
        partition: usize,
        _context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        Ok(Box::pin(MemoryStream::try_new(
            self.partitions[partition].clone(),
            self.projected_schema.clone(),
            self.projection.clone(),
        )?))
    }

    /// We recompute the statistics dynamically from the arrow metadata as it is pretty cheap to do so
    fn statistics(&self) -> Result<Statistics> {
        Ok(common::compute_record_batch_statistics(
            &self.partitions,
            &self.schema,
            self.projection.clone(),
        ))
    }
}

impl MemoryExec {
    /// Create a new execution plan for reading in-memory record batches
    /// The provided `schema` should not have the projection applied.
    pub fn try_new(
        partitions: &[Vec<RecordBatch>],
        schema: SchemaRef,
        projection: Option<Vec<usize>>,
    ) -> Result<Self> {
        let projected_schema = project_schema(&schema, projection.as_ref())?;
        let cache = Self::compute_properties(projected_schema.clone(), &[], partitions);
        Ok(Self {
            partitions: partitions.to_vec(),
            schema,
            projected_schema,
            projection,
            sort_information: vec![],
            cache,
            show_sizes: true,
        })
    }

    /// set `show_sizes` to determine whether to display partition sizes
    pub fn with_show_sizes(mut self, show_sizes: bool) -> Self {
        self.show_sizes = show_sizes;
        self
    }

    pub fn partitions(&self) -> &[Vec<RecordBatch>] {
        &self.partitions
    }

    pub fn projection(&self) -> &Option<Vec<usize>> {
        &self.projection
    }

    /// A memory table can be ordered by multiple expressions simultaneously.
    /// [`EquivalenceProperties`] keeps track of expressions that describe the
    /// global ordering of the schema. These columns are not necessarily same; e.g.
    /// ```text
    /// ┌-------┐
    /// | a | b |
    /// |---|---|
    /// | 1 | 9 |
    /// | 2 | 8 |
    /// | 3 | 7 |
    /// | 5 | 5 |
    /// └---┴---┘
    /// ```
    /// where both `a ASC` and `b DESC` can describe the table ordering. With
    /// [`EquivalenceProperties`], we can keep track of these equivalences
    /// and treat `a ASC` and `b DESC` as the same ordering requirement.
    pub fn with_sort_information(mut self, sort_information: Vec<LexOrdering>) -> Self {
        self.sort_information = sort_information;

        // We need to update equivalence properties when updating sort information.
        let eq_properties = EquivalenceProperties::new_with_orderings(
            self.schema(),
            &self.sort_information,
        );
        self.cache = self.cache.with_eq_properties(eq_properties);
        self
    }

    pub fn original_schema(&self) -> SchemaRef {
        self.schema.clone()
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(
        schema: SchemaRef,
        orderings: &[LexOrdering],
        partitions: &[Vec<RecordBatch>],
    ) -> PlanProperties {
        let eq_properties = EquivalenceProperties::new_with_orderings(schema, orderings);
        PlanProperties::new(
            eq_properties,                                       // Equivalence Properties
            Partitioning::UnknownPartitioning(partitions.len()), // Output Partitioning
            ExecutionMode::Bounded,                              // Execution Mode
        )
    }
}

/// Iterator over batches
pub struct MemoryStream {
    /// Vector of record batches
    data: Vec<RecordBatch>,
    /// Optional memory reservation bound to the data, freed on drop
    reservation: Option<MemoryReservation>,
    /// Schema representing the data
    schema: SchemaRef,
    /// Optional projection for which columns to load
    projection: Option<Vec<usize>>,
    /// Index into the data
    index: usize,
}

impl MemoryStream {
    /// Create an iterator for a vector of record batches
    pub fn try_new(
        data: Vec<RecordBatch>,
        schema: SchemaRef,
        projection: Option<Vec<usize>>,
    ) -> Result<Self> {
        Ok(Self {
            data,
            reservation: None,
            schema,
            projection,
            index: 0,
        })
    }

    /// Set the memory reservation for the data
    pub(super) fn with_reservation(mut self, reservation: MemoryReservation) -> Self {
        self.reservation = Some(reservation);
        self
    }
}

impl Stream for MemoryStream {
    type Item = Result<RecordBatch>;

    fn poll_next(
        mut self: std::pin::Pin<&mut Self>,
        _: &mut Context<'_>,
    ) -> Poll<Option<Self::Item>> {
        Poll::Ready(if self.index < self.data.len() {
            self.index += 1;
            let batch = &self.data[self.index - 1];

            // return just the columns requested
            let batch = match self.projection.as_ref() {
                Some(columns) => batch.project(columns)?,
                None => batch.clone(),
            };

            Some(Ok(batch))
        } else {
            None
        })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.data.len(), Some(self.data.len()))
    }
}

impl RecordBatchStream for MemoryStream {
    /// Get the schema
    fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use crate::memory::MemoryExec;
    use crate::ExecutionPlan;

    use arrow_schema::{DataType, Field, Schema, SortOptions};
    use datafusion_physical_expr::expressions::col;
    use datafusion_physical_expr::PhysicalSortExpr;

    #[test]
    fn test_memory_order_eq() -> datafusion_common::Result<()> {
        let schema = Arc::new(Schema::new(vec![
            Field::new("a", DataType::Int64, false),
            Field::new("b", DataType::Int64, false),
            Field::new("c", DataType::Int64, false),
        ]));
        let sort1 = vec![
            PhysicalSortExpr {
                expr: col("a", &schema)?,
                options: SortOptions::default(),
            },
            PhysicalSortExpr {
                expr: col("b", &schema)?,
                options: SortOptions::default(),
            },
        ];
        let sort2 = vec![PhysicalSortExpr {
            expr: col("c", &schema)?,
            options: SortOptions::default(),
        }];
        let mut expected_output_order = vec![];
        expected_output_order.extend(sort1.clone());
        expected_output_order.extend(sort2.clone());

        let sort_information = vec![sort1.clone(), sort2.clone()];
        let mem_exec = MemoryExec::try_new(&[vec![]], schema, None)?
            .with_sort_information(sort_information);

        assert_eq!(
            mem_exec.properties().output_ordering().unwrap(),
            expected_output_order
        );
        let eq_properties = mem_exec.properties().equivalence_properties();
        assert!(eq_properties.oeq_class().contains(&sort1));
        assert!(eq_properties.oeq_class().contains(&sort2));
        Ok(())
    }
}