1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! CoalesceBatchesExec combines small batches into larger batches for more efficient use of
//! vectorized processing by upstream operators.

use std::any::Any;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};

use super::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
use super::{DisplayAs, ExecutionPlanProperties, PlanProperties, Statistics};
use crate::{
    DisplayFormatType, ExecutionPlan, RecordBatchStream, SendableRecordBatchStream,
};

use arrow::datatypes::SchemaRef;
use arrow::error::Result as ArrowResult;
use arrow::record_batch::RecordBatch;
use datafusion_common::Result;
use datafusion_execution::TaskContext;

use futures::stream::{Stream, StreamExt};
use log::trace;

/// CoalesceBatchesExec combines small batches into larger batches for more efficient use of
/// vectorized processing by upstream operators.
#[derive(Debug)]
pub struct CoalesceBatchesExec {
    /// The input plan
    input: Arc<dyn ExecutionPlan>,
    /// Minimum number of rows for coalesces batches
    target_batch_size: usize,
    /// Execution metrics
    metrics: ExecutionPlanMetricsSet,
    cache: PlanProperties,
}

impl CoalesceBatchesExec {
    /// Create a new CoalesceBatchesExec
    pub fn new(input: Arc<dyn ExecutionPlan>, target_batch_size: usize) -> Self {
        let cache = Self::compute_properties(&input);
        Self {
            input,
            target_batch_size,
            metrics: ExecutionPlanMetricsSet::new(),
            cache,
        }
    }

    /// The input plan
    pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
        &self.input
    }

    /// Minimum number of rows for coalesces batches
    pub fn target_batch_size(&self) -> usize {
        self.target_batch_size
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(input: &Arc<dyn ExecutionPlan>) -> PlanProperties {
        // The coalesce batches operator does not make any changes to the
        // partitioning of its input.
        PlanProperties::new(
            input.equivalence_properties().clone(), // Equivalence Properties
            input.output_partitioning().clone(),    // Output Partitioning
            input.execution_mode(),                 // Execution Mode
        )
    }
}

impl DisplayAs for CoalesceBatchesExec {
    fn fmt_as(
        &self,
        t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                write!(
                    f,
                    "CoalesceBatchesExec: target_batch_size={}",
                    self.target_batch_size
                )
            }
        }
    }
}

impl ExecutionPlan for CoalesceBatchesExec {
    fn name(&self) -> &'static str {
        "CoalesceBatchesExec"
    }

    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.cache
    }

    fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
        vec![self.input.clone()]
    }

    fn maintains_input_order(&self) -> Vec<bool> {
        vec![true]
    }

    fn benefits_from_input_partitioning(&self) -> Vec<bool> {
        vec![false]
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        Ok(Arc::new(CoalesceBatchesExec::new(
            children[0].clone(),
            self.target_batch_size,
        )))
    }

    fn execute(
        &self,
        partition: usize,
        context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        Ok(Box::pin(CoalesceBatchesStream {
            input: self.input.execute(partition, context)?,
            schema: self.input.schema(),
            target_batch_size: self.target_batch_size,
            buffer: Vec::new(),
            buffered_rows: 0,
            is_closed: false,
            baseline_metrics: BaselineMetrics::new(&self.metrics, partition),
        }))
    }

    fn metrics(&self) -> Option<MetricsSet> {
        Some(self.metrics.clone_inner())
    }

    fn statistics(&self) -> Result<Statistics> {
        self.input.statistics()
    }
}

struct CoalesceBatchesStream {
    /// The input plan
    input: SendableRecordBatchStream,
    /// The input schema
    schema: SchemaRef,
    /// Minimum number of rows for coalesces batches
    target_batch_size: usize,
    /// Buffered batches
    buffer: Vec<RecordBatch>,
    /// Buffered row count
    buffered_rows: usize,
    /// Whether the stream has finished returning all of its data or not
    is_closed: bool,
    /// Execution metrics
    baseline_metrics: BaselineMetrics,
}

impl Stream for CoalesceBatchesStream {
    type Item = Result<RecordBatch>;

    fn poll_next(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Self::Item>> {
        let poll = self.poll_next_inner(cx);
        self.baseline_metrics.record_poll(poll)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        // we can't predict the size of incoming batches so re-use the size hint from the input
        self.input.size_hint()
    }
}

impl CoalesceBatchesStream {
    fn poll_next_inner(
        self: &mut Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Result<RecordBatch>>> {
        // Get a clone (uses same underlying atomic) as self gets borrowed below
        let cloned_time = self.baseline_metrics.elapsed_compute().clone();

        if self.is_closed {
            return Poll::Ready(None);
        }
        loop {
            let input_batch = self.input.poll_next_unpin(cx);
            // records time on drop
            let _timer = cloned_time.timer();
            match input_batch {
                Poll::Ready(x) => match x {
                    Some(Ok(batch)) => {
                        if batch.num_rows() >= self.target_batch_size
                            && self.buffer.is_empty()
                        {
                            return Poll::Ready(Some(Ok(batch)));
                        } else if batch.num_rows() == 0 {
                            // discard empty batches
                        } else {
                            // add to the buffered batches
                            self.buffered_rows += batch.num_rows();
                            self.buffer.push(batch);
                            // check to see if we have enough batches yet
                            if self.buffered_rows >= self.target_batch_size {
                                // combine the batches and return
                                let batch = concat_batches(
                                    &self.schema,
                                    &self.buffer,
                                    self.buffered_rows,
                                )?;
                                // reset buffer state
                                self.buffer.clear();
                                self.buffered_rows = 0;
                                // return batch
                                return Poll::Ready(Some(Ok(batch)));
                            }
                        }
                    }
                    None => {
                        self.is_closed = true;
                        // we have reached the end of the input stream but there could still
                        // be buffered batches
                        if self.buffer.is_empty() {
                            return Poll::Ready(None);
                        } else {
                            // combine the batches and return
                            let batch = concat_batches(
                                &self.schema,
                                &self.buffer,
                                self.buffered_rows,
                            )?;
                            // reset buffer state
                            self.buffer.clear();
                            self.buffered_rows = 0;
                            // return batch
                            return Poll::Ready(Some(Ok(batch)));
                        }
                    }
                    other => return Poll::Ready(other),
                },
                Poll::Pending => return Poll::Pending,
            }
        }
    }
}

impl RecordBatchStream for CoalesceBatchesStream {
    fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }
}

/// Concatenates an array of `RecordBatch` into one batch
pub fn concat_batches(
    schema: &SchemaRef,
    batches: &[RecordBatch],
    row_count: usize,
) -> ArrowResult<RecordBatch> {
    trace!(
        "Combined {} batches containing {} rows",
        batches.len(),
        row_count
    );
    arrow::compute::concat_batches(schema, batches)
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{memory::MemoryExec, repartition::RepartitionExec, Partitioning};

    use arrow::datatypes::{DataType, Field, Schema};
    use arrow_array::UInt32Array;

    #[tokio::test(flavor = "multi_thread")]
    async fn test_concat_batches() -> Result<()> {
        let schema = test_schema();
        let partition = create_vec_batches(&schema, 10);
        let partitions = vec![partition];

        let output_partitions = coalesce_batches(&schema, partitions, 21).await?;
        assert_eq!(1, output_partitions.len());

        // input is 10 batches x 8 rows (80 rows)
        // expected output is batches of at least 20 rows (except for the final batch)
        let batches = &output_partitions[0];
        assert_eq!(4, batches.len());
        assert_eq!(24, batches[0].num_rows());
        assert_eq!(24, batches[1].num_rows());
        assert_eq!(24, batches[2].num_rows());
        assert_eq!(8, batches[3].num_rows());

        Ok(())
    }

    fn test_schema() -> Arc<Schema> {
        Arc::new(Schema::new(vec![Field::new("c0", DataType::UInt32, false)]))
    }

    async fn coalesce_batches(
        schema: &SchemaRef,
        input_partitions: Vec<Vec<RecordBatch>>,
        target_batch_size: usize,
    ) -> Result<Vec<Vec<RecordBatch>>> {
        // create physical plan
        let exec = MemoryExec::try_new(&input_partitions, schema.clone(), None)?;
        let exec =
            RepartitionExec::try_new(Arc::new(exec), Partitioning::RoundRobinBatch(1))?;
        let exec: Arc<dyn ExecutionPlan> =
            Arc::new(CoalesceBatchesExec::new(Arc::new(exec), target_batch_size));

        // execute and collect results
        let output_partition_count = exec.output_partitioning().partition_count();
        let mut output_partitions = Vec::with_capacity(output_partition_count);
        for i in 0..output_partition_count {
            // execute this *output* partition and collect all batches
            let task_ctx = Arc::new(TaskContext::default());
            let mut stream = exec.execute(i, task_ctx.clone())?;
            let mut batches = vec![];
            while let Some(result) = stream.next().await {
                batches.push(result?);
            }
            output_partitions.push(batches);
        }
        Ok(output_partitions)
    }

    /// Create vector batches
    fn create_vec_batches(schema: &Schema, n: usize) -> Vec<RecordBatch> {
        let batch = create_batch(schema);
        let mut vec = Vec::with_capacity(n);
        for _ in 0..n {
            vec.push(batch.clone());
        }
        vec
    }

    /// Create batch
    fn create_batch(schema: &Schema) -> RecordBatch {
        RecordBatch::try_new(
            Arc::new(schema.clone()),
            vec![Arc::new(UInt32Array::from(vec![1, 2, 3, 4, 5, 6, 7, 8]))],
        )
        .unwrap()
    }
}