1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Negation (-) expression

use std::any::Any;
use std::hash::{Hash, Hasher};
use std::sync::Arc;

use crate::physical_expr::down_cast_any_ref;
use crate::sort_properties::SortProperties;
use crate::PhysicalExpr;

use arrow::{
    compute::kernels::numeric::neg_wrapping,
    datatypes::{DataType, Schema},
    record_batch::RecordBatch,
};
use datafusion_common::{plan_err, Result};
use datafusion_expr::interval_arithmetic::Interval;
use datafusion_expr::{
    type_coercion::{is_interval, is_null, is_signed_numeric, is_timestamp},
    ColumnarValue,
};

/// Negative expression
#[derive(Debug, Hash)]
pub struct NegativeExpr {
    /// Input expression
    arg: Arc<dyn PhysicalExpr>,
}

impl NegativeExpr {
    /// Create new not expression
    pub fn new(arg: Arc<dyn PhysicalExpr>) -> Self {
        Self { arg }
    }

    /// Get the input expression
    pub fn arg(&self) -> &Arc<dyn PhysicalExpr> {
        &self.arg
    }
}

impl std::fmt::Display for NegativeExpr {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "(- {})", self.arg)
    }
}

impl PhysicalExpr for NegativeExpr {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn data_type(&self, input_schema: &Schema) -> Result<DataType> {
        self.arg.data_type(input_schema)
    }

    fn nullable(&self, input_schema: &Schema) -> Result<bool> {
        self.arg.nullable(input_schema)
    }

    fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> {
        let arg = self.arg.evaluate(batch)?;
        match arg {
            ColumnarValue::Array(array) => {
                let result = neg_wrapping(array.as_ref())?;
                Ok(ColumnarValue::Array(result))
            }
            ColumnarValue::Scalar(scalar) => {
                Ok(ColumnarValue::Scalar((scalar.arithmetic_negate())?))
            }
        }
    }

    fn children(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        vec![self.arg.clone()]
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn PhysicalExpr>>,
    ) -> Result<Arc<dyn PhysicalExpr>> {
        Ok(Arc::new(NegativeExpr::new(children[0].clone())))
    }

    fn dyn_hash(&self, state: &mut dyn Hasher) {
        let mut s = state;
        self.hash(&mut s);
    }

    /// Given the child interval of a NegativeExpr, it calculates the NegativeExpr's interval.
    /// It replaces the upper and lower bounds after multiplying them with -1.
    /// Ex: `(a, b]` => `[-b, -a)`
    fn evaluate_bounds(&self, children: &[&Interval]) -> Result<Interval> {
        Interval::try_new(
            children[0].upper().arithmetic_negate()?,
            children[0].lower().arithmetic_negate()?,
        )
    }

    /// Returns a new [`Interval`] of a NegativeExpr  that has the existing `interval` given that
    /// given the input interval is known to be `children`.
    fn propagate_constraints(
        &self,
        interval: &Interval,
        children: &[&Interval],
    ) -> Result<Option<Vec<Interval>>> {
        let child_interval = children[0];
        let negated_interval = Interval::try_new(
            interval.upper().arithmetic_negate()?,
            interval.lower().arithmetic_negate()?,
        )?;

        Ok(child_interval
            .intersect(negated_interval)?
            .map(|result| vec![result]))
    }

    /// The ordering of a [`NegativeExpr`] is simply the reverse of its child.
    fn get_ordering(&self, children: &[SortProperties]) -> SortProperties {
        -children[0]
    }
}

impl PartialEq<dyn Any> for NegativeExpr {
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| self.arg.eq(&x.arg))
            .unwrap_or(false)
    }
}

/// Creates a unary expression NEGATIVE
///
/// # Errors
///
/// This function errors when the argument's type is not signed numeric
pub fn negative(
    arg: Arc<dyn PhysicalExpr>,
    input_schema: &Schema,
) -> Result<Arc<dyn PhysicalExpr>> {
    let data_type = arg.data_type(input_schema)?;
    if is_null(&data_type) {
        Ok(arg)
    } else if !is_signed_numeric(&data_type)
        && !is_interval(&data_type)
        && !is_timestamp(&data_type)
    {
        plan_err!("Negation only supports numeric, interval and timestamp types")
    } else {
        Ok(Arc::new(NegativeExpr::new(arg)))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::expressions::{col, Column};

    use arrow::array::*;
    use arrow::datatypes::*;
    use arrow_schema::DataType::{Float32, Float64, Int16, Int32, Int64, Int8};
    use datafusion_common::cast::as_primitive_array;
    use datafusion_common::DataFusionError;

    use paste::paste;

    macro_rules! test_array_negative_op {
        ($DATA_TY:tt, $($VALUE:expr),*   ) => {
            let schema = Schema::new(vec![Field::new("a", DataType::$DATA_TY, true)]);
            let expr = negative(col("a", &schema)?, &schema)?;
            assert_eq!(expr.data_type(&schema)?, DataType::$DATA_TY);
            assert!(expr.nullable(&schema)?);
            let mut arr = Vec::new();
            let mut arr_expected = Vec::new();
            $(
                arr.push(Some($VALUE));
                arr_expected.push(Some(-$VALUE));
            )+
            arr.push(None);
            arr_expected.push(None);
            let input = paste!{[<$DATA_TY Array>]::from(arr)};
            let expected = &paste!{[<$DATA_TY Array>]::from(arr_expected)};
            let batch =
                RecordBatch::try_new(Arc::new(schema.clone()), vec![Arc::new(input)])?;
            let result = expr.evaluate(&batch)?.into_array(batch.num_rows()).expect("Failed to convert to array");
            let result =
                as_primitive_array(&result).expect(format!("failed to downcast to {:?}Array", $DATA_TY).as_str());
            assert_eq!(result, expected);
        };
    }

    #[test]
    fn array_negative_op() -> Result<()> {
        test_array_negative_op!(Int8, 2i8, 1i8);
        test_array_negative_op!(Int16, 234i16, 123i16);
        test_array_negative_op!(Int32, 2345i32, 1234i32);
        test_array_negative_op!(Int64, 23456i64, 12345i64);
        test_array_negative_op!(Float32, 2345.0f32, 1234.0f32);
        test_array_negative_op!(Float64, 23456.0f64, 12345.0f64);
        Ok(())
    }

    #[test]
    fn test_evaluate_bounds() -> Result<()> {
        let negative_expr = NegativeExpr {
            arg: Arc::new(Column::new("a", 0)),
        };
        let child_interval = Interval::make(Some(-2), Some(1))?;
        let negative_expr_interval = Interval::make(Some(-1), Some(2))?;
        assert_eq!(
            negative_expr.evaluate_bounds(&[&child_interval])?,
            negative_expr_interval
        );
        Ok(())
    }

    #[test]
    fn test_propagate_constraints() -> Result<()> {
        let negative_expr = NegativeExpr {
            arg: Arc::new(Column::new("a", 0)),
        };
        let original_child_interval = Interval::make(Some(-2), Some(3))?;
        let negative_expr_interval = Interval::make(Some(0), Some(4))?;
        let after_propagation = Some(vec![Interval::make(Some(-2), Some(0))?]);
        assert_eq!(
            negative_expr.propagate_constraints(
                &negative_expr_interval,
                &[&original_child_interval]
            )?,
            after_propagation
        );
        Ok(())
    }

    #[test]
    fn test_negation_valid_types() -> Result<()> {
        let negatable_types = [
            DataType::Int8,
            DataType::Timestamp(TimeUnit::Second, None),
            DataType::Interval(IntervalUnit::YearMonth),
        ];
        for negatable_type in negatable_types {
            let schema = Schema::new(vec![Field::new("a", negatable_type, true)]);
            let _expr = negative(col("a", &schema)?, &schema)?;
        }
        Ok(())
    }

    #[test]
    fn test_negation_invalid_types() -> Result<()> {
        let schema = Schema::new(vec![Field::new("a", DataType::Utf8, true)]);
        let expr = negative(col("a", &schema)?, &schema).unwrap_err();
        matches!(expr, DataFusionError::Plan(_));
        Ok(())
    }
}