1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`Partitioning`] and [`Distribution`] for `ExecutionPlans`

use std::fmt;
use std::sync::Arc;

use crate::{physical_exprs_equal, EquivalenceProperties, PhysicalExpr};

/// Output partitioning supported by [`ExecutionPlan`]s.
///
/// When `executed`, `ExecutionPlan`s  produce one or more independent stream of
/// data batches in parallel, referred to as partitions. The streams are Rust
/// `async` [`Stream`]s (a special kind of future). The number of output
/// partitions varies based on the input and the operation performed.
///
/// For example, an `ExecutionPlan` that has output partitioning of 3 will
/// produce 3 distinct output streams as the result of calling
/// `ExecutionPlan::execute(0)`, `ExecutionPlan::execute(1)`, and
/// `ExecutionPlan::execute(2)`, as shown below:
///
/// ```text
///                                                   ...         ...        ...
///               ...                                  ▲           ▲           ▲
///                                                    │           │           │
///                ▲                                   │           │           │
///                │                                   │           │           │
///                │                               ┌───┴────┐  ┌───┴────┐  ┌───┴────┐
///     ┌────────────────────┐                     │ Stream │  │ Stream │  │ Stream │
///     │   ExecutionPlan    │                     │  (0)   │  │  (1)   │  │  (2)   │
///     └────────────────────┘                     └────────┘  └────────┘  └────────┘
///                ▲                                   ▲           ▲           ▲
///                │                                   │           │           │
///     ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─                          │           │           │
///             Input        │                         │           │           │
///     └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─                          │           │           │
///                ▲                               ┌ ─ ─ ─ ─   ┌ ─ ─ ─ ─   ┌ ─ ─ ─ ─
///                │                                 Input  │    Input  │    Input  │
///                │                               │ Stream    │ Stream    │ Stream
///                                                   (0)   │     (1)   │     (2)   │
///               ...                              └ ─ ▲ ─ ─   └ ─ ▲ ─ ─   └ ─ ▲ ─ ─
///                                                    │           │           │
///                                                    │           │           │
///                                                    │           │           │
///
/// ExecutionPlan with 1 input                      3 (async) streams, one for each
/// that has 3 partitions, which itself             output partition
/// has 3 output partitions
/// ```
///
/// It is common (but not required) that an `ExecutionPlan` has the same number
/// of input partitions as output partitions. However, some plans have different
/// numbers such as the `RepartitionExec` that redistributes batches from some
/// number of inputs to some number of outputs
///
/// ```text
///               ...                                     ...         ...        ...
///
///                                                        ▲           ▲           ▲
///                ▲                                       │           │           │
///                │                                       │           │           │
///       ┌────────┴───────────┐                           │           │           │
///       │  RepartitionExec   │                      ┌────┴───┐  ┌────┴───┐  ┌────┴───┐
///       └────────────────────┘                      │ Stream │  │ Stream │  │ Stream │
///                ▲                                  │  (0)   │  │  (1)   │  │  (2)   │
///                │                                  └────────┘  └────────┘  └────────┘
///                │                                       ▲           ▲           ▲
///                ...                                     │           │           │
///                                                        └──────────┐│┌──────────┘
///                                                                   │││
///                                                                   │││
/// RepartitionExec with one input
/// that has 3 partitions, but                        3 (async) streams, that internally
/// itself has only 1 output partition                  pull from the same input stream
///                                                                  ...
/// ```
///
/// # Additional Examples
///
/// A simple `FileScanExec` might produce one output stream (partition) for each
/// file (note the actual DataFusion file scaners can read individual files in
/// parallel, potentially producing multiple partitions per file)
///
/// Plans such as `SortPreservingMerge` produce a single output stream
/// (1 output partition) by combining some number of input streams (input partitions)
///
/// Plans such as `FilterExec` produce the same number of output streams
/// (partitions) as input streams (partitions).
///
/// [`ExecutionPlan`]: https://docs.rs/datafusion/latest/datafusion/physical_plan/trait.ExecutionPlan.html
/// [`Stream`]: https://docs.rs/futures/latest/futures/stream/trait.Stream.html
#[derive(Debug, Clone)]
pub enum Partitioning {
    /// Allocate batches using a round-robin algorithm and the specified number of partitions
    RoundRobinBatch(usize),
    /// Allocate rows based on a hash of one of more expressions and the specified number of
    /// partitions
    Hash(Vec<Arc<dyn PhysicalExpr>>, usize),
    /// Unknown partitioning scheme with a known number of partitions
    UnknownPartitioning(usize),
}

impl fmt::Display for Partitioning {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match self {
            Partitioning::RoundRobinBatch(size) => write!(f, "RoundRobinBatch({size})"),
            Partitioning::Hash(phy_exprs, size) => {
                let phy_exprs_str = phy_exprs
                    .iter()
                    .map(|e| format!("{e}"))
                    .collect::<Vec<String>>()
                    .join(", ");
                write!(f, "Hash([{phy_exprs_str}], {size})")
            }
            Partitioning::UnknownPartitioning(size) => {
                write!(f, "UnknownPartitioning({size})")
            }
        }
    }
}
impl Partitioning {
    /// Returns the number of partitions in this partitioning scheme
    pub fn partition_count(&self) -> usize {
        use Partitioning::*;
        match self {
            RoundRobinBatch(n) | Hash(_, n) | UnknownPartitioning(n) => *n,
        }
    }

    /// Returns true when the guarantees made by this [`Partitioning`] are sufficient to
    /// satisfy the partitioning scheme mandated by the `required` [`Distribution`].
    pub fn satisfy(
        &self,
        required: &Distribution,
        eq_properties: &EquivalenceProperties,
    ) -> bool {
        match required {
            Distribution::UnspecifiedDistribution => true,
            Distribution::SinglePartition if self.partition_count() == 1 => true,
            Distribution::HashPartitioned(required_exprs) => {
                match self {
                    // Here we do not check the partition count for hash partitioning and assumes the partition count
                    // and hash functions in the system are the same. In future if we plan to support storage partition-wise joins,
                    // then we need to have the partition count and hash functions validation.
                    Partitioning::Hash(partition_exprs, _) => {
                        let fast_match =
                            physical_exprs_equal(required_exprs, partition_exprs);
                        // If the required exprs do not match, need to leverage the eq_properties provided by the child
                        // and normalize both exprs based on the equivalent groups.
                        if !fast_match {
                            let eq_groups = eq_properties.eq_group();
                            if !eq_groups.is_empty() {
                                let normalized_required_exprs = required_exprs
                                    .iter()
                                    .map(|e| eq_groups.normalize_expr(e.clone()))
                                    .collect::<Vec<_>>();
                                let normalized_partition_exprs = partition_exprs
                                    .iter()
                                    .map(|e| eq_groups.normalize_expr(e.clone()))
                                    .collect::<Vec<_>>();
                                return physical_exprs_equal(
                                    &normalized_required_exprs,
                                    &normalized_partition_exprs,
                                );
                            }
                        }
                        fast_match
                    }
                    _ => false,
                }
            }
            _ => false,
        }
    }
}

impl PartialEq for Partitioning {
    fn eq(&self, other: &Partitioning) -> bool {
        match (self, other) {
            (
                Partitioning::RoundRobinBatch(count1),
                Partitioning::RoundRobinBatch(count2),
            ) if count1 == count2 => true,
            (Partitioning::Hash(exprs1, count1), Partitioning::Hash(exprs2, count2))
                if physical_exprs_equal(exprs1, exprs2) && (count1 == count2) =>
            {
                true
            }
            _ => false,
        }
    }
}

/// How data is distributed amongst partitions. See [`Partitioning`] for more
/// details.
#[derive(Debug, Clone)]
pub enum Distribution {
    /// Unspecified distribution
    UnspecifiedDistribution,
    /// A single partition is required
    SinglePartition,
    /// Requires children to be distributed in such a way that the same
    /// values of the keys end up in the same partition
    HashPartitioned(Vec<Arc<dyn PhysicalExpr>>),
}

impl Distribution {
    /// Creates a `Partitioning` that satisfies this `Distribution`
    pub fn create_partitioning(self, partition_count: usize) -> Partitioning {
        match self {
            Distribution::UnspecifiedDistribution => {
                Partitioning::UnknownPartitioning(partition_count)
            }
            Distribution::SinglePartition => Partitioning::UnknownPartitioning(1),
            Distribution::HashPartitioned(expr) => {
                Partitioning::Hash(expr, partition_count)
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use super::*;
    use crate::expressions::Column;

    use arrow::datatypes::{DataType, Field, Schema};
    use datafusion_common::Result;

    #[test]
    fn partitioning_satisfy_distribution() -> Result<()> {
        let schema = Arc::new(Schema::new(vec![
            Field::new("column_1", DataType::Int64, false),
            Field::new("column_2", DataType::Utf8, false),
        ]));

        let partition_exprs1: Vec<Arc<dyn PhysicalExpr>> = vec![
            Arc::new(Column::new_with_schema("column_1", &schema).unwrap()),
            Arc::new(Column::new_with_schema("column_2", &schema).unwrap()),
        ];

        let partition_exprs2: Vec<Arc<dyn PhysicalExpr>> = vec![
            Arc::new(Column::new_with_schema("column_2", &schema).unwrap()),
            Arc::new(Column::new_with_schema("column_1", &schema).unwrap()),
        ];

        let distribution_types = vec![
            Distribution::UnspecifiedDistribution,
            Distribution::SinglePartition,
            Distribution::HashPartitioned(partition_exprs1.clone()),
        ];

        let single_partition = Partitioning::UnknownPartitioning(1);
        let unspecified_partition = Partitioning::UnknownPartitioning(10);
        let round_robin_partition = Partitioning::RoundRobinBatch(10);
        let hash_partition1 = Partitioning::Hash(partition_exprs1, 10);
        let hash_partition2 = Partitioning::Hash(partition_exprs2, 10);
        let eq_properties = EquivalenceProperties::new(schema);

        for distribution in distribution_types {
            let result = (
                single_partition.satisfy(&distribution, &eq_properties),
                unspecified_partition.satisfy(&distribution, &eq_properties),
                round_robin_partition.satisfy(&distribution, &eq_properties),
                hash_partition1.satisfy(&distribution, &eq_properties),
                hash_partition2.satisfy(&distribution, &eq_properties),
            );

            match distribution {
                Distribution::UnspecifiedDistribution => {
                    assert_eq!(result, (true, true, true, true, true))
                }
                Distribution::SinglePartition => {
                    assert_eq!(result, (true, false, false, false, false))
                }
                Distribution::HashPartitioned(_) => {
                    assert_eq!(result, (false, false, false, true, false))
                }
            }
        }

        Ok(())
    }
}