1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines the FIRST_VALUE/LAST_VALUE aggregations.

use arrow::array::{ArrayRef, AsArray, BooleanArray};
use arrow::compute::{self, lexsort_to_indices, SortColumn, SortOptions};
use arrow::datatypes::{DataType, Field};
use datafusion_common::utils::{compare_rows, get_arrayref_at_indices, get_row_at_idx};
use datafusion_common::{
    arrow_datafusion_err, internal_err, DataFusionError, Result, ScalarValue,
};
use datafusion_expr::function::AccumulatorArgs;
use datafusion_expr::type_coercion::aggregates::NUMERICS;
use datafusion_expr::utils::format_state_name;
use datafusion_expr::{
    Accumulator, AggregateUDFImpl, ArrayFunctionSignature, Expr, Signature,
    TypeSignature, Volatility,
};
use datafusion_physical_expr_common::aggregate::utils::{
    down_cast_any_ref, get_sort_options, ordering_fields,
};
use datafusion_physical_expr_common::aggregate::AggregateExpr;
use datafusion_physical_expr_common::expressions;
use datafusion_physical_expr_common::physical_expr::PhysicalExpr;
use datafusion_physical_expr_common::sort_expr::{LexOrdering, PhysicalSortExpr};
use datafusion_physical_expr_common::utils::reverse_order_bys;

use std::any::Any;
use std::fmt::Debug;
use std::sync::Arc;

make_udaf_expr_and_func!(
    FirstValue,
    first_value,
    "Returns the first value in a group of values.",
    first_value_udaf
);

pub struct FirstValue {
    signature: Signature,
    aliases: Vec<String>,
}

impl Debug for FirstValue {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_struct("FirstValue")
            .field("name", &self.name())
            .field("signature", &self.signature)
            .field("accumulator", &"<FUNC>")
            .finish()
    }
}

impl Default for FirstValue {
    fn default() -> Self {
        Self::new()
    }
}

impl FirstValue {
    pub fn new() -> Self {
        Self {
            aliases: vec![String::from("FIRST_VALUE")],
            signature: Signature::one_of(
                vec![
                    // TODO: we can introduce more strict signature that only numeric of array types are allowed
                    TypeSignature::ArraySignature(ArrayFunctionSignature::Array),
                    TypeSignature::Uniform(1, NUMERICS.to_vec()),
                ],
                Volatility::Immutable,
            ),
        }
    }
}

impl AggregateUDFImpl for FirstValue {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        "FIRST_VALUE"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        Ok(arg_types[0].clone())
    }

    fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
        let mut all_sort_orders = vec![];

        // Construct PhysicalSortExpr objects from Expr objects:
        let mut sort_exprs = vec![];
        for expr in acc_args.sort_exprs {
            if let Expr::Sort(sort) = expr {
                if let Expr::Column(col) = sort.expr.as_ref() {
                    let name = &col.name;
                    let e = expressions::column::col(name, acc_args.schema)?;
                    sort_exprs.push(PhysicalSortExpr {
                        expr: e,
                        options: SortOptions {
                            descending: !sort.asc,
                            nulls_first: sort.nulls_first,
                        },
                    });
                }
            }
        }
        if !sort_exprs.is_empty() {
            all_sort_orders.extend(sort_exprs);
        }

        let ordering_req = all_sort_orders;

        let ordering_dtypes = ordering_req
            .iter()
            .map(|e| e.expr.data_type(acc_args.schema))
            .collect::<Result<Vec<_>>>()?;

        let requirement_satisfied = ordering_req.is_empty();

        FirstValueAccumulator::try_new(
            acc_args.data_type,
            &ordering_dtypes,
            ordering_req,
            acc_args.ignore_nulls,
        )
        .map(|acc| Box::new(acc.with_requirement_satisfied(requirement_satisfied)) as _)
    }

    fn state_fields(
        &self,
        name: &str,
        value_type: DataType,
        ordering_fields: Vec<Field>,
    ) -> Result<Vec<Field>> {
        let mut fields = vec![Field::new(
            format_state_name(name, "first_value"),
            value_type,
            true,
        )];
        fields.extend(ordering_fields);
        fields.push(Field::new("is_set", DataType::Boolean, true));
        Ok(fields)
    }

    fn aliases(&self) -> &[String] {
        &self.aliases
    }
}

#[derive(Debug)]
pub struct FirstValueAccumulator {
    first: ScalarValue,
    // At the beginning, `is_set` is false, which means `first` is not seen yet.
    // Once we see the first value, we set the `is_set` flag and do not update `first` anymore.
    is_set: bool,
    // Stores ordering values, of the aggregator requirement corresponding to first value
    // of the aggregator. These values are used during merging of multiple partitions.
    orderings: Vec<ScalarValue>,
    // Stores the applicable ordering requirement.
    ordering_req: LexOrdering,
    // Stores whether incoming data already satisfies the ordering requirement.
    requirement_satisfied: bool,
    // Ignore null values.
    ignore_nulls: bool,
}

impl FirstValueAccumulator {
    /// Creates a new `FirstValueAccumulator` for the given `data_type`.
    pub fn try_new(
        data_type: &DataType,
        ordering_dtypes: &[DataType],
        ordering_req: LexOrdering,
        ignore_nulls: bool,
    ) -> Result<Self> {
        let orderings = ordering_dtypes
            .iter()
            .map(ScalarValue::try_from)
            .collect::<Result<Vec<_>>>()?;
        let requirement_satisfied = ordering_req.is_empty();
        ScalarValue::try_from(data_type).map(|first| Self {
            first,
            is_set: false,
            orderings,
            ordering_req,
            requirement_satisfied,
            ignore_nulls,
        })
    }

    pub fn with_requirement_satisfied(mut self, requirement_satisfied: bool) -> Self {
        self.requirement_satisfied = requirement_satisfied;
        self
    }

    // Updates state with the values in the given row.
    fn update_with_new_row(&mut self, row: &[ScalarValue]) {
        self.first = row[0].clone();
        self.orderings = row[1..].to_vec();
        self.is_set = true;
    }

    fn get_first_idx(&self, values: &[ArrayRef]) -> Result<Option<usize>> {
        let [value, ordering_values @ ..] = values else {
            return internal_err!("Empty row in FIRST_VALUE");
        };
        if self.requirement_satisfied {
            // Get first entry according to the pre-existing ordering (0th index):
            if self.ignore_nulls {
                // If ignoring nulls, find the first non-null value.
                for i in 0..value.len() {
                    if !value.is_null(i) {
                        return Ok(Some(i));
                    }
                }
                return Ok(None);
            } else {
                // If not ignoring nulls, return the first value if it exists.
                return Ok((!value.is_empty()).then_some(0));
            }
        }
        let sort_columns = ordering_values
            .iter()
            .zip(self.ordering_req.iter())
            .map(|(values, req)| SortColumn {
                values: values.clone(),
                options: Some(req.options),
            })
            .collect::<Vec<_>>();

        if self.ignore_nulls {
            let indices = lexsort_to_indices(&sort_columns, None)?;
            // If ignoring nulls, find the first non-null value.
            for index in indices.iter().flatten() {
                if !value.is_null(index as usize) {
                    return Ok(Some(index as usize));
                }
            }
            Ok(None)
        } else {
            let indices = lexsort_to_indices(&sort_columns, Some(1))?;
            Ok((!indices.is_empty()).then_some(indices.value(0) as _))
        }
    }
}

impl Accumulator for FirstValueAccumulator {
    fn state(&mut self) -> Result<Vec<ScalarValue>> {
        let mut result = vec![self.first.clone()];
        result.extend(self.orderings.iter().cloned());
        result.push(ScalarValue::Boolean(Some(self.is_set)));
        Ok(result)
    }

    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        if !self.is_set {
            if let Some(first_idx) = self.get_first_idx(values)? {
                let row = get_row_at_idx(values, first_idx)?;
                self.update_with_new_row(&row);
            }
        } else if !self.requirement_satisfied {
            if let Some(first_idx) = self.get_first_idx(values)? {
                let row = get_row_at_idx(values, first_idx)?;
                let orderings = &row[1..];
                if compare_rows(
                    &self.orderings,
                    orderings,
                    &get_sort_options(&self.ordering_req),
                )?
                .is_gt()
                {
                    self.update_with_new_row(&row);
                }
            }
        }
        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        // FIRST_VALUE(first1, first2, first3, ...)
        // last index contains is_set flag.
        let is_set_idx = states.len() - 1;
        let flags = states[is_set_idx].as_boolean();
        let filtered_states = filter_states_according_to_is_set(states, flags)?;
        // 1..is_set_idx range corresponds to ordering section
        let sort_cols =
            convert_to_sort_cols(&filtered_states[1..is_set_idx], &self.ordering_req);

        let ordered_states = if sort_cols.is_empty() {
            // When no ordering is given, use the existing state as is:
            filtered_states
        } else {
            let indices = lexsort_to_indices(&sort_cols, None)?;
            get_arrayref_at_indices(&filtered_states, &indices)?
        };
        if !ordered_states[0].is_empty() {
            let first_row = get_row_at_idx(&ordered_states, 0)?;
            // When collecting orderings, we exclude the is_set flag from the state.
            let first_ordering = &first_row[1..is_set_idx];
            let sort_options = get_sort_options(&self.ordering_req);
            // Either there is no existing value, or there is an earlier version in new data.
            if !self.is_set
                || compare_rows(&self.orderings, first_ordering, &sort_options)?.is_gt()
            {
                // Update with first value in the state. Note that we should exclude the
                // is_set flag from the state. Otherwise, we will end up with a state
                // containing two is_set flags.
                self.update_with_new_row(&first_row[0..is_set_idx]);
            }
        }
        Ok(())
    }

    fn evaluate(&mut self) -> Result<ScalarValue> {
        Ok(self.first.clone())
    }

    fn size(&self) -> usize {
        std::mem::size_of_val(self) - std::mem::size_of_val(&self.first)
            + self.first.size()
            + ScalarValue::size_of_vec(&self.orderings)
            - std::mem::size_of_val(&self.orderings)
    }
}

/// TO BE DEPRECATED: Builtin FIRST_VALUE physical aggregate expression will be replaced by udf in the future
#[derive(Debug, Clone)]
pub struct FirstValuePhysicalExpr {
    name: String,
    input_data_type: DataType,
    order_by_data_types: Vec<DataType>,
    expr: Arc<dyn PhysicalExpr>,
    ordering_req: LexOrdering,
    requirement_satisfied: bool,
    ignore_nulls: bool,
    state_fields: Vec<Field>,
}

impl FirstValuePhysicalExpr {
    /// Creates a new FIRST_VALUE aggregation function.
    pub fn new(
        expr: Arc<dyn PhysicalExpr>,
        name: impl Into<String>,
        input_data_type: DataType,
        ordering_req: LexOrdering,
        order_by_data_types: Vec<DataType>,
        state_fields: Vec<Field>,
    ) -> Self {
        let requirement_satisfied = ordering_req.is_empty();
        Self {
            name: name.into(),
            input_data_type,
            order_by_data_types,
            expr,
            ordering_req,
            requirement_satisfied,
            ignore_nulls: false,
            state_fields,
        }
    }

    pub fn with_ignore_nulls(mut self, ignore_nulls: bool) -> Self {
        self.ignore_nulls = ignore_nulls;
        self
    }

    /// Returns the name of the aggregate expression.
    pub fn name(&self) -> &str {
        &self.name
    }

    /// Returns the input data type of the aggregate expression.
    pub fn input_data_type(&self) -> &DataType {
        &self.input_data_type
    }

    /// Returns the data types of the order-by columns.
    pub fn order_by_data_types(&self) -> &Vec<DataType> {
        &self.order_by_data_types
    }

    /// Returns the expression associated with the aggregate function.
    pub fn expr(&self) -> &Arc<dyn PhysicalExpr> {
        &self.expr
    }

    /// Returns the lexical ordering requirements of the aggregate expression.
    pub fn ordering_req(&self) -> &LexOrdering {
        &self.ordering_req
    }

    pub fn with_requirement_satisfied(mut self, requirement_satisfied: bool) -> Self {
        self.requirement_satisfied = requirement_satisfied;
        self
    }

    pub fn convert_to_last(self) -> LastValuePhysicalExpr {
        let mut name = format!("LAST{}", &self.name[5..]);
        replace_order_by_clause(&mut name);

        let FirstValuePhysicalExpr {
            expr,
            input_data_type,
            ordering_req,
            order_by_data_types,
            ..
        } = self;
        LastValuePhysicalExpr::new(
            expr,
            name,
            input_data_type,
            reverse_order_bys(&ordering_req),
            order_by_data_types,
        )
    }
}

impl AggregateExpr for FirstValuePhysicalExpr {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn field(&self) -> Result<Field> {
        Ok(Field::new(&self.name, self.input_data_type.clone(), true))
    }

    fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        FirstValueAccumulator::try_new(
            &self.input_data_type,
            &self.order_by_data_types,
            self.ordering_req.clone(),
            self.ignore_nulls,
        )
        .map(|acc| {
            Box::new(acc.with_requirement_satisfied(self.requirement_satisfied)) as _
        })
    }

    fn state_fields(&self) -> Result<Vec<Field>> {
        if !self.state_fields.is_empty() {
            return Ok(self.state_fields.clone());
        }

        let mut fields = vec![Field::new(
            format_state_name(&self.name, "first_value"),
            self.input_data_type.clone(),
            true,
        )];
        fields.extend(ordering_fields(
            &self.ordering_req,
            &self.order_by_data_types,
        ));
        fields.push(Field::new(
            format_state_name(&self.name, "is_set"),
            DataType::Boolean,
            true,
        ));
        Ok(fields)
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        vec![self.expr.clone()]
    }

    fn order_bys(&self) -> Option<&[PhysicalSortExpr]> {
        (!self.ordering_req.is_empty()).then_some(&self.ordering_req)
    }

    fn name(&self) -> &str {
        &self.name
    }

    fn reverse_expr(&self) -> Option<Arc<dyn AggregateExpr>> {
        Some(Arc::new(self.clone().convert_to_last()))
    }

    fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        FirstValueAccumulator::try_new(
            &self.input_data_type,
            &self.order_by_data_types,
            self.ordering_req.clone(),
            self.ignore_nulls,
        )
        .map(|acc| {
            Box::new(acc.with_requirement_satisfied(self.requirement_satisfied)) as _
        })
    }
}

impl PartialEq<dyn Any> for FirstValuePhysicalExpr {
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| {
                self.name == x.name
                    && self.input_data_type == x.input_data_type
                    && self.order_by_data_types == x.order_by_data_types
                    && self.expr.eq(&x.expr)
            })
            .unwrap_or(false)
    }
}

/// TO BE DEPRECATED: Builtin LAST_VALUE physical aggregate expression will be replaced by udf in the future
#[derive(Debug, Clone)]
pub struct LastValuePhysicalExpr {
    name: String,
    input_data_type: DataType,
    order_by_data_types: Vec<DataType>,
    expr: Arc<dyn PhysicalExpr>,
    ordering_req: LexOrdering,
    requirement_satisfied: bool,
    ignore_nulls: bool,
}

impl LastValuePhysicalExpr {
    /// Creates a new LAST_VALUE aggregation function.
    pub fn new(
        expr: Arc<dyn PhysicalExpr>,
        name: impl Into<String>,
        input_data_type: DataType,
        ordering_req: LexOrdering,
        order_by_data_types: Vec<DataType>,
    ) -> Self {
        let requirement_satisfied = ordering_req.is_empty();
        Self {
            name: name.into(),
            input_data_type,
            order_by_data_types,
            expr,
            ordering_req,
            requirement_satisfied,
            ignore_nulls: false,
        }
    }

    pub fn with_ignore_nulls(mut self, ignore_nulls: bool) -> Self {
        self.ignore_nulls = ignore_nulls;
        self
    }

    /// Returns the name of the aggregate expression.
    pub fn name(&self) -> &str {
        &self.name
    }

    /// Returns the input data type of the aggregate expression.
    pub fn input_data_type(&self) -> &DataType {
        &self.input_data_type
    }

    /// Returns the data types of the order-by columns.
    pub fn order_by_data_types(&self) -> &Vec<DataType> {
        &self.order_by_data_types
    }

    /// Returns the expression associated with the aggregate function.
    pub fn expr(&self) -> &Arc<dyn PhysicalExpr> {
        &self.expr
    }

    /// Returns the lexical ordering requirements of the aggregate expression.
    pub fn ordering_req(&self) -> &LexOrdering {
        &self.ordering_req
    }

    pub fn with_requirement_satisfied(mut self, requirement_satisfied: bool) -> Self {
        self.requirement_satisfied = requirement_satisfied;
        self
    }

    pub fn convert_to_first(self) -> FirstValuePhysicalExpr {
        let mut name = format!("FIRST{}", &self.name[4..]);
        replace_order_by_clause(&mut name);

        let LastValuePhysicalExpr {
            expr,
            input_data_type,
            ordering_req,
            order_by_data_types,
            ..
        } = self;
        FirstValuePhysicalExpr::new(
            expr,
            name,
            input_data_type,
            reverse_order_bys(&ordering_req),
            order_by_data_types,
            vec![],
        )
    }
}

impl AggregateExpr for LastValuePhysicalExpr {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn field(&self) -> Result<Field> {
        Ok(Field::new(&self.name, self.input_data_type.clone(), true))
    }

    fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        LastValueAccumulator::try_new(
            &self.input_data_type,
            &self.order_by_data_types,
            self.ordering_req.clone(),
            self.ignore_nulls,
        )
        .map(|acc| {
            Box::new(acc.with_requirement_satisfied(self.requirement_satisfied)) as _
        })
    }

    fn state_fields(&self) -> Result<Vec<Field>> {
        let mut fields = vec![Field::new(
            format_state_name(&self.name, "last_value"),
            self.input_data_type.clone(),
            true,
        )];
        fields.extend(ordering_fields(
            &self.ordering_req,
            &self.order_by_data_types,
        ));
        fields.push(Field::new(
            format_state_name(&self.name, "is_set"),
            DataType::Boolean,
            true,
        ));
        Ok(fields)
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        vec![self.expr.clone()]
    }

    fn order_bys(&self) -> Option<&[PhysicalSortExpr]> {
        (!self.ordering_req.is_empty()).then_some(&self.ordering_req)
    }

    fn name(&self) -> &str {
        &self.name
    }

    fn reverse_expr(&self) -> Option<Arc<dyn AggregateExpr>> {
        Some(Arc::new(self.clone().convert_to_first()))
    }

    fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        LastValueAccumulator::try_new(
            &self.input_data_type,
            &self.order_by_data_types,
            self.ordering_req.clone(),
            self.ignore_nulls,
        )
        .map(|acc| {
            Box::new(acc.with_requirement_satisfied(self.requirement_satisfied)) as _
        })
    }
}

impl PartialEq<dyn Any> for LastValuePhysicalExpr {
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| {
                self.name == x.name
                    && self.input_data_type == x.input_data_type
                    && self.order_by_data_types == x.order_by_data_types
                    && self.expr.eq(&x.expr)
            })
            .unwrap_or(false)
    }
}

#[derive(Debug)]
struct LastValueAccumulator {
    last: ScalarValue,
    // The `is_set` flag keeps track of whether the last value is finalized.
    // This information is used to discriminate genuine NULLs and NULLS that
    // occur due to empty partitions.
    is_set: bool,
    orderings: Vec<ScalarValue>,
    // Stores the applicable ordering requirement.
    ordering_req: LexOrdering,
    // Stores whether incoming data already satisfies the ordering requirement.
    requirement_satisfied: bool,
    // Ignore null values.
    ignore_nulls: bool,
}

impl LastValueAccumulator {
    /// Creates a new `LastValueAccumulator` for the given `data_type`.
    pub fn try_new(
        data_type: &DataType,
        ordering_dtypes: &[DataType],
        ordering_req: LexOrdering,
        ignore_nulls: bool,
    ) -> Result<Self> {
        let orderings = ordering_dtypes
            .iter()
            .map(ScalarValue::try_from)
            .collect::<Result<Vec<_>>>()?;
        let requirement_satisfied = ordering_req.is_empty();
        ScalarValue::try_from(data_type).map(|last| Self {
            last,
            is_set: false,
            orderings,
            ordering_req,
            requirement_satisfied,
            ignore_nulls,
        })
    }

    // Updates state with the values in the given row.
    fn update_with_new_row(&mut self, row: &[ScalarValue]) {
        self.last = row[0].clone();
        self.orderings = row[1..].to_vec();
        self.is_set = true;
    }

    fn get_last_idx(&self, values: &[ArrayRef]) -> Result<Option<usize>> {
        let [value, ordering_values @ ..] = values else {
            return internal_err!("Empty row in LAST_VALUE");
        };
        if self.requirement_satisfied {
            // Get last entry according to the order of data:
            if self.ignore_nulls {
                // If ignoring nulls, find the last non-null value.
                for i in (0..value.len()).rev() {
                    if !value.is_null(i) {
                        return Ok(Some(i));
                    }
                }
                return Ok(None);
            } else {
                return Ok((!value.is_empty()).then_some(value.len() - 1));
            }
        }
        let sort_columns = ordering_values
            .iter()
            .zip(self.ordering_req.iter())
            .map(|(values, req)| {
                // Take the reverse ordering requirement. This enables us to
                // use "fetch = 1" to get the last value.
                SortColumn {
                    values: values.clone(),
                    options: Some(!req.options),
                }
            })
            .collect::<Vec<_>>();

        if self.ignore_nulls {
            let indices = lexsort_to_indices(&sort_columns, None)?;
            // If ignoring nulls, find the last non-null value.
            for index in indices.iter().flatten() {
                if !value.is_null(index as usize) {
                    return Ok(Some(index as usize));
                }
            }
            Ok(None)
        } else {
            let indices = lexsort_to_indices(&sort_columns, Some(1))?;
            Ok((!indices.is_empty()).then_some(indices.value(0) as _))
        }
    }

    fn with_requirement_satisfied(mut self, requirement_satisfied: bool) -> Self {
        self.requirement_satisfied = requirement_satisfied;
        self
    }
}

impl Accumulator for LastValueAccumulator {
    fn state(&mut self) -> Result<Vec<ScalarValue>> {
        let mut result = vec![self.last.clone()];
        result.extend(self.orderings.clone());
        result.push(ScalarValue::Boolean(Some(self.is_set)));
        Ok(result)
    }

    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        if !self.is_set || self.requirement_satisfied {
            if let Some(last_idx) = self.get_last_idx(values)? {
                let row = get_row_at_idx(values, last_idx)?;
                self.update_with_new_row(&row);
            }
        } else if let Some(last_idx) = self.get_last_idx(values)? {
            let row = get_row_at_idx(values, last_idx)?;
            let orderings = &row[1..];
            // Update when there is a more recent entry
            if compare_rows(
                &self.orderings,
                orderings,
                &get_sort_options(&self.ordering_req),
            )?
            .is_lt()
            {
                self.update_with_new_row(&row);
            }
        }

        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        // LAST_VALUE(last1, last2, last3, ...)
        // last index contains is_set flag.
        let is_set_idx = states.len() - 1;
        let flags = states[is_set_idx].as_boolean();
        let filtered_states = filter_states_according_to_is_set(states, flags)?;
        // 1..is_set_idx range corresponds to ordering section
        let sort_cols =
            convert_to_sort_cols(&filtered_states[1..is_set_idx], &self.ordering_req);

        let ordered_states = if sort_cols.is_empty() {
            // When no ordering is given, use existing state as is:
            filtered_states
        } else {
            let indices = lexsort_to_indices(&sort_cols, None)?;
            get_arrayref_at_indices(&filtered_states, &indices)?
        };

        if !ordered_states[0].is_empty() {
            let last_idx = ordered_states[0].len() - 1;
            let last_row = get_row_at_idx(&ordered_states, last_idx)?;
            // When collecting orderings, we exclude the is_set flag from the state.
            let last_ordering = &last_row[1..is_set_idx];
            let sort_options = get_sort_options(&self.ordering_req);
            // Either there is no existing value, or there is a newer (latest)
            // version in the new data:
            if !self.is_set
                || compare_rows(&self.orderings, last_ordering, &sort_options)?.is_lt()
            {
                // Update with last value in the state. Note that we should exclude the
                // is_set flag from the state. Otherwise, we will end up with a state
                // containing two is_set flags.
                self.update_with_new_row(&last_row[0..is_set_idx]);
            }
        }
        Ok(())
    }

    fn evaluate(&mut self) -> Result<ScalarValue> {
        Ok(self.last.clone())
    }

    fn size(&self) -> usize {
        std::mem::size_of_val(self) - std::mem::size_of_val(&self.last)
            + self.last.size()
            + ScalarValue::size_of_vec(&self.orderings)
            - std::mem::size_of_val(&self.orderings)
    }
}

/// Filters states according to the `is_set` flag at the last column and returns
/// the resulting states.
fn filter_states_according_to_is_set(
    states: &[ArrayRef],
    flags: &BooleanArray,
) -> Result<Vec<ArrayRef>> {
    states
        .iter()
        .map(|state| compute::filter(state, flags).map_err(|e| arrow_datafusion_err!(e)))
        .collect::<Result<Vec<_>>>()
}

/// Combines array refs and their corresponding orderings to construct `SortColumn`s.
fn convert_to_sort_cols(
    arrs: &[ArrayRef],
    sort_exprs: &[PhysicalSortExpr],
) -> Vec<SortColumn> {
    arrs.iter()
        .zip(sort_exprs.iter())
        .map(|(item, sort_expr)| SortColumn {
            values: item.clone(),
            options: Some(sort_expr.options),
        })
        .collect::<Vec<_>>()
}

fn replace_order_by_clause(order_by: &mut String) {
    let suffixes = [
        (" DESC NULLS FIRST]", " ASC NULLS LAST]"),
        (" ASC NULLS FIRST]", " DESC NULLS LAST]"),
        (" DESC NULLS LAST]", " ASC NULLS FIRST]"),
        (" ASC NULLS LAST]", " DESC NULLS FIRST]"),
    ];

    if let Some(start) = order_by.find("ORDER BY [") {
        if let Some(end) = order_by[start..].find(']') {
            let order_by_start = start + 9;
            let order_by_end = start + end;

            let column_order = &order_by[order_by_start..=order_by_end];
            for &(suffix, replacement) in &suffixes {
                if column_order.ends_with(suffix) {
                    let new_order = column_order.replace(suffix, replacement);
                    order_by.replace_range(order_by_start..=order_by_end, &new_order);
                    break;
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use arrow::array::Int64Array;

    use super::*;

    #[test]
    fn test_first_last_value_value() -> Result<()> {
        let mut first_accumulator =
            FirstValueAccumulator::try_new(&DataType::Int64, &[], vec![], false)?;
        let mut last_accumulator =
            LastValueAccumulator::try_new(&DataType::Int64, &[], vec![], false)?;
        // first value in the tuple is start of the range (inclusive),
        // second value in the tuple is end of the range (exclusive)
        let ranges: Vec<(i64, i64)> = vec![(0, 10), (1, 11), (2, 13)];
        // create 3 ArrayRefs between each interval e.g from 0 to 9, 1 to 10, 2 to 12
        let arrs = ranges
            .into_iter()
            .map(|(start, end)| {
                Arc::new(Int64Array::from((start..end).collect::<Vec<_>>())) as ArrayRef
            })
            .collect::<Vec<_>>();
        for arr in arrs {
            // Once first_value is set, accumulator should remember it.
            // It shouldn't update first_value for each new batch
            first_accumulator.update_batch(&[arr.clone()])?;
            // last_value should be updated for each new batch.
            last_accumulator.update_batch(&[arr])?;
        }
        // First Value comes from the first value of the first batch which is 0
        assert_eq!(first_accumulator.evaluate()?, ScalarValue::Int64(Some(0)));
        // Last value comes from the last value of the last batch which is 12
        assert_eq!(last_accumulator.evaluate()?, ScalarValue::Int64(Some(12)));
        Ok(())
    }

    #[test]
    fn test_first_last_state_after_merge() -> Result<()> {
        let ranges: Vec<(i64, i64)> = vec![(0, 10), (1, 11), (2, 13)];
        // create 3 ArrayRefs between each interval e.g from 0 to 9, 1 to 10, 2 to 12
        let arrs = ranges
            .into_iter()
            .map(|(start, end)| {
                Arc::new((start..end).collect::<Int64Array>()) as ArrayRef
            })
            .collect::<Vec<_>>();

        // FirstValueAccumulator
        let mut first_accumulator =
            FirstValueAccumulator::try_new(&DataType::Int64, &[], vec![], false)?;

        first_accumulator.update_batch(&[arrs[0].clone()])?;
        let state1 = first_accumulator.state()?;

        let mut first_accumulator =
            FirstValueAccumulator::try_new(&DataType::Int64, &[], vec![], false)?;
        first_accumulator.update_batch(&[arrs[1].clone()])?;
        let state2 = first_accumulator.state()?;

        assert_eq!(state1.len(), state2.len());

        let mut states = vec![];

        for idx in 0..state1.len() {
            states.push(arrow::compute::concat(&[
                &state1[idx].to_array()?,
                &state2[idx].to_array()?,
            ])?);
        }

        let mut first_accumulator =
            FirstValueAccumulator::try_new(&DataType::Int64, &[], vec![], false)?;
        first_accumulator.merge_batch(&states)?;

        let merged_state = first_accumulator.state()?;
        assert_eq!(merged_state.len(), state1.len());

        // LastValueAccumulator
        let mut last_accumulator =
            LastValueAccumulator::try_new(&DataType::Int64, &[], vec![], false)?;

        last_accumulator.update_batch(&[arrs[0].clone()])?;
        let state1 = last_accumulator.state()?;

        let mut last_accumulator =
            LastValueAccumulator::try_new(&DataType::Int64, &[], vec![], false)?;
        last_accumulator.update_batch(&[arrs[1].clone()])?;
        let state2 = last_accumulator.state()?;

        assert_eq!(state1.len(), state2.len());

        let mut states = vec![];

        for idx in 0..state1.len() {
            states.push(arrow::compute::concat(&[
                &state1[idx].to_array()?,
                &state2[idx].to_array()?,
            ])?);
        }

        let mut last_accumulator =
            LastValueAccumulator::try_new(&DataType::Int64, &[], vec![], false)?;
        last_accumulator.merge_batch(&states)?;

        let merged_state = last_accumulator.state()?;
        assert_eq!(merged_state.len(), state1.len());

        Ok(())
    }
}