1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
//! A lightweight Datalog engine in Rust
//!
//! The intended design is that one has static `Relation` types that are sets
//! of tuples, and `Variable` types that represent monotonically increasing
//! sets of tuples.
//!
//! The types are mostly wrappers around `Vec<Tuple>` indicating sorted-ness,
//! and the intent is that this code can be dropped in the middle of an otherwise
//! normal Rust program, run to completion, and then the results extracted as
//! vectors again.

#![forbid(missing_docs)]

use std::rc::Rc;
use std::cell::RefCell;
use std::cmp::Ordering;

mod map;
mod join;

/// A static, ordered list of key-value pairs.
///
/// A relation represents a fixed set of key-value pairs. In many places in a
/// Datalog computation we want to be sure that certain relations are not able
/// to vary (for example, in antijoins).
pub struct Relation<Tuple: Ord> {
    /// Sorted list of distinct tuples.
    pub elements: Vec<Tuple>
}

impl<Tuple: Ord> Relation<Tuple> {
    /// Merges two relations into their union.
    pub fn merge(self, other: Self) -> Self {

        let mut elements1 = self.elements;
        let mut elements2 = other.elements;

        // If one of the element lists is zero-length, we don't need to do any work
        if elements1.len() == 0 {
            return Relation { elements: elements2 };
        }
        if elements2.len() == 0 {
            return Relation { elements: elements1 };
        }

        // Make sure that elements1 starts with the lower element
        // Will not panic since both collections must have at least 1 element at this point
        if elements1[0] > elements2[0] {
            std::mem::swap(&mut elements1, &mut elements2);
        }

        // Fast path for when all the new elements are after the exiting ones
        if elements1[elements1.len() - 1] < elements2[0] {
            elements1.extend(elements2.into_iter());
            // println!("fast path");
            return Relation { elements: elements1 };
        }

        let mut elements = Vec::with_capacity(elements1.len() + elements2.len());
        let mut elements1 = elements1.drain(..);
        let mut elements2 = elements2.drain(..).peekable();

        elements.push(elements1.next().unwrap());
        if &elements[0] == elements2.peek().unwrap() {
            elements2.next();
        }

        for elem in elements1 {
            while elements2.peek().map(|x| x.cmp(&elem)) == Some(Ordering::Less) {
                elements.push(elements2.next().unwrap());
            }
            if elements2.peek().map(|x| x.cmp(&elem)) == Some(Ordering::Equal) {
                elements2.next();
            }
            elements.push(elem);
        }

        // Finish draining second list
        for elem in elements2 {
            elements.push(elem);
        }

        Relation { elements }
    }

    fn from_vec(mut elements: Vec<Tuple>) -> Self {
        elements.sort_unstable();
        elements.dedup();
        Relation { elements }
    }

}

impl<Tuple: Ord, I: IntoIterator<Item=Tuple>> From<I> for Relation<Tuple> {
    fn from(iterator: I) -> Self {
        Relation::from_vec(iterator.into_iter().collect())
    }
}

impl<Tuple: Ord> std::ops::Deref for Relation<Tuple> {
    type Target = [Tuple];
    fn deref(&self) -> &Self::Target {
        &self.elements[..]
    }
}

/// An iterative context for recursive evaluation.
///
/// An `Iteration` tracks monotonic variables, and monitors their progress.
/// It can inform the user if they have ceased changing, at which point the
/// computation should be done.
pub struct Iteration {
    variables: Vec<Box<VariableTrait>>,
}

impl Iteration {
    /// Create a new iterative context.
    pub fn new() -> Self {
        Iteration { variables: Vec::new() }
    }
    /// Reports whether any of the monitored variables have changed since
    /// the most recent call.
    pub fn changed(&mut self) -> bool {
        let mut result = false;
        for variable in self.variables.iter_mut() {
            if variable.changed() { result = true; }
        }
        result
    }
    /// Creates a new named variable associated with the iterative context.
    pub fn variable<Tuple: Ord+'static>(&mut self, name: &str) -> Variable<Tuple> {
        let variable = Variable::new(name);
        self.variables.push(Box::new(variable.clone()));
        variable
    }
    /// Creates a new named variable associated with the iterative context.
    ///
    /// This variable will not be maintained distinctly, and may advertise tuples as
    /// recent multiple times (perhaps unboundedly many times).
    pub fn variable_indistinct<Tuple: Ord+'static>(&mut self, name: &str) -> Variable<Tuple> {
        let mut variable = Variable::new(name);
        variable.distinct = false;
        self.variables.push(Box::new(variable.clone()));
        variable
    }
}

/// A type that can report on whether it has changed.
trait VariableTrait {
    /// Reports whether the variable has changed since it was last asked.
    fn changed(&mut self) -> bool;
}

/// An monotonically increasing set of `Tuple`s.
///
/// There are three stages in the lifecycle of a tuple:
///
///   1. A tuple is added to `self.to_add`, but is not yet visible externally.
///   2. Newly added tuples are then promoted to `self.recent` for one iteration.
///   3. After one iteration, recent tuples are moved to `self.tuples` for posterity.
///
/// Each time `self.changed()` is called, the `recent` relation is folded into `tuples`,
/// and the `to_add` relations are merged, potentially deduplicated against `tuples`, and
/// then made  `recent`. This way, across calls to `changed()` all added tuples are in
/// `recent` at least once and eventually all are in `tuples`.
///
/// A `Variable` may optionally be instructed not to de-duplicate its tuples, for reasons
/// of performance. Such a variable cannot be relied on to terminate iterative computation,
/// and it is important that any cycle of derivations have at least one de-duplicating
/// variable on it.
pub struct Variable<Tuple: Ord> {
    /// Should the variable be maintained distinctly.
    distinct: bool,
    /// A useful name for the variable.
    name: String,
    /// A list of relations whose union are the accepted tuples.
    pub stable: Rc<RefCell<Vec<Relation<Tuple>>>>,
    /// A list of recent tuples, still to be processed.
    pub recent: Rc<RefCell<Relation<Tuple>>>,
    /// A list of future tuples, to be introduced.
    to_add: Rc<RefCell<Vec<Relation<Tuple>>>>,
}

// Operator implementations.
impl<Tuple: Ord> Variable<Tuple> {
    /// Adds tuples that result from joining `input1` and `input2`.
    ///
    /// # Examples
    ///
    /// This example starts a collection with the pairs (x, x+1) and (x+1, x) for x in 0 .. 10.
    /// It then adds pairs (y, z) for which (x, y) and (x, z) are present. Because the initial
    /// pairs are symmetric, this should result in all pairs (x, y) for x and y in 0 .. 11.
    ///
    /// ```
    /// use datafrog::{Iteration, Relation};
    ///
    /// let mut iteration = Iteration::new();
    /// let variable = iteration.variable::<(usize, usize)>("source");
    /// variable.insert(Relation::from((0 .. 10).map(|x| (x, x + 1))));
    /// variable.insert(Relation::from((0 .. 10).map(|x| (x + 1, x))));
    ///
    /// while iteration.changed() {
    ///     variable.from_join(&variable, &variable, |&key, &val1, &val2| (val1, val2));
    /// }
    ///
    /// let result = variable.complete();
    /// assert_eq!(result.len(), 121);
    /// ```
    pub fn from_join<K: Ord,V1: Ord, V2: Ord>(
        &self,
        input1: &Variable<(K,V1)>,
        input2: &Variable<(K,V2)>,
        logic: impl FnMut(&K,&V1,&V2)->Tuple)
    {
        join::join_into(input1, input2, self, logic)
    }
    /// Adds tuples from `input1` whose key is not present in `input2`.
    ///
    /// # Examples
    ///
    /// This example starts a collection with the pairs (x, x+1) for x in 0 .. 10. It then
    /// adds any pairs (x+1,x) for which x is not a multiple of three. That excludes four
    /// pairs (for 0, 3, 6, and 9) which should leave us with 16 total pairs.
    ///
    /// ```
    /// use datafrog::{Iteration, Relation};
    ///
    /// let mut iteration = Iteration::new();
    /// let variable = iteration.variable::<(usize, usize)>("source");
    /// variable.insert(Relation::from((0 .. 10).map(|x| (x, x + 1))));
    ///
    /// let relation = Relation::from((0 .. 10).filter(|x| x % 3 == 0));
    ///
    /// while iteration.changed() {
    ///     variable.from_antijoin(&variable, &relation, |&key, &val| (val, key));
    /// }
    ///
    /// let result = variable.complete();
    /// assert_eq!(result.len(), 16);
    /// ```
    pub fn from_antijoin<K: Ord, V: Ord>(
        &self,
        input1: &Variable<(K,V)>,
        input2: &Relation<K>,
        logic: impl FnMut(&K,&V)->Tuple)
    {
        join::antijoin_into(input1, input2, self, logic)
    }
    /// Adds tuples that result from mapping `input`.
    ///
    /// # Examples
    ///
    /// This example starts a collection with the pairs (x, x) for x in 0 .. 10. It then
    /// repeatedly adds any pairs (x, z) for (x, y) in the collection, where z is the Collatz
    /// step for y: it is y/2 if y is even, and 3*y + 1 if y is odd. This produces all of the
    /// pairs (x, y) where x visits y as part of its Collatz journey.
    ///
    /// ```
    /// use datafrog::{Iteration, Relation};
    ///
    /// let mut iteration = Iteration::new();
    /// let variable = iteration.variable::<(usize, usize)>("source");
    /// variable.insert(Relation::from((0 .. 10).map(|x| (x, x))));
    ///
    /// let relation = Relation::from((0 .. 10).filter(|x| x % 3 == 0));
    ///
    /// while iteration.changed() {
    ///     variable.from_map(&variable, |&(key, val)|
    ///         if val % 2 == 0 {
    ///             (key, val/2)
    ///         }
    ///         else {
    ///             (key, 3*val + 1)
    ///         });
    /// }
    ///
    /// let result = variable.complete();
    /// assert_eq!(result.len(), 74);
    /// ```
    pub fn from_map<T2: Ord>(&self, input: &Variable<T2>, logic: impl FnMut(&T2)->Tuple) {
        map::map_into(input, self, logic)
    }
}

impl<Tuple: Ord> Clone for Variable<Tuple> {
    fn clone(&self) -> Self {
        Variable {
            distinct: self.distinct,
            name: self.name.clone(),
            stable: self.stable.clone(),
            recent: self.recent.clone(),
            to_add: self.to_add.clone(),
        }
    }
}

impl<Tuple: Ord> Variable<Tuple> {
    fn new(name: &str) -> Self {
        Variable {
            distinct: true,
            name: name.to_string(),
            stable: Rc::new(RefCell::new(Vec::new().into())),
            recent: Rc::new(RefCell::new(Vec::new().into())),
            to_add: Rc::new(RefCell::new(Vec::new().into())),
        }
    }
    /// Inserts a relation into the variable.
    ///
    /// This is most commonly used to load initial values into a variable.
    /// it is not obvious that it should be commonly used otherwise, but
    /// it should not be harmful.
    pub fn insert(&self, relation: Relation<Tuple>) {
        if !relation.is_empty() {
            self.to_add.borrow_mut().push(relation);
        }
    }
    /// Consumes the variable and returns a relation.
    ///
    /// This method removes the ability for the variable to develop, and
    /// flattens all internal tuples down to one relation. The method
    /// asserts that iteration has completed, in that `self.recent` and
    /// `self.to_add` should both be empty.
    pub fn complete(self) -> Relation<Tuple> {

        assert!(self.recent.borrow().is_empty());
        assert!(self.to_add.borrow().is_empty());
        let mut result: Relation<Tuple> = Vec::new().into();
        while let Some(batch) = self.stable.borrow_mut().pop() {
            result = result.merge(batch);
        }
        result
    }
}

impl<Tuple: Ord> VariableTrait for Variable<Tuple> {
    fn changed(&mut self) -> bool {

        // 1. Merge self.recent into self.stable.
        if !self.recent.borrow().is_empty() {
            let mut recent = ::std::mem::replace(&mut (*self.recent.borrow_mut()), Vec::new().into());
            while self.stable.borrow().last().map(|x| x.len() <= 2 * recent.len()) == Some(true) {
                let last = self.stable.borrow_mut().pop().unwrap();
                recent = recent.merge(last);
            }
            self.stable.borrow_mut().push(recent);
        }

        // 2. Move self.to_add into self.recent.
        let to_add = self.to_add.borrow_mut().pop();
        if let Some(mut to_add) = to_add {
            while let Some(to_add_more) = self.to_add.borrow_mut().pop() {
                to_add = to_add.merge(to_add_more);
            }
            // 2b. Restrict `to_add` to tuples not in `self.stable`.
            if self.distinct {
                for batch in self.stable.borrow().iter() {
                    let mut slice = &batch[..];
                    // Only gallop if the slice is relatively large.
                    if slice.len() > 4 * to_add.elements.len() {
                        to_add.elements.retain(|x| {
                            slice = join::gallop(slice, |y| y < x);
                            slice.len() == 0 || &slice[0] != x
                        });
                    }
                    else {
                        to_add.elements.retain(|x| {
                            while slice.len() > 0 && &slice[0] < x {
                                slice = &slice[1..];
                            }
                            slice.len() == 0 || &slice[0] != x
                        });
                    }
                }
            }
            *self.recent.borrow_mut() = to_add;
        }

        // let mut total = 0;
        // for tuple in self.stable.borrow().iter() {
        //     total += tuple.len();
        // }

        // println!("Variable\t{}\t{}\t{}", self.name, total, self.recent.borrow().len());

        !self.recent.borrow().is_empty()
    }
}

// impl<Tuple: Ord> Drop for Variable<Tuple> {
//     fn drop(&mut self) {
//         let mut total = 0;
//         for batch in self.stable.borrow().iter() {
//             total += batch.len();
//         }
//         println!("FINAL: {:?}\t{:?}", self.name, total);
//     }
// }