1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
//! The `darling::Error` type and its internals.
//!
//! Error handling is one of the core values of `darling`; creating great errors is hard and
//! never the reason that a proc-macro author started writing their crate. As a result, the
//! `Error` type in `darling` tries to make adding span information, suggestions, and other
//! help content easy when manually implementing `darling` traits, and automatic when deriving
//! them.

use proc_macro2::{Span, TokenStream};
use std::error::Error as StdError;
use std::fmt;
use std::iter::{self, Iterator};
use std::string::ToString;
use std::vec;
use syn::spanned::Spanned;
use syn::{Lit, LitStr, Path};

mod kind;

use self::kind::{ErrorKind, ErrorUnknownField};

/// An alias of `Result` specific to attribute parsing.
pub type Result<T> = ::std::result::Result<T, Error>;

/// An error encountered during attribute parsing.
///
/// Given that most errors darling encounters represent code bugs in dependent crates,
/// the internal structure of the error is deliberately opaque.
///
/// # Usage
/// Proc-macro expansion happens very infrequently compared to runtime tasks such as
/// deserialization, and it happens in the context of an expensive compilation taks.
/// For that reason, darling prefers not to fail on the first error it encounters, instead
/// doing as much work as it can, accumulating errors into a single report.
///
/// As a result, `darling::Error` is more of guaranteed-non-empty error collection
/// than a single problem. These errors also have some notion of hierarchy, stemming from
/// the hierarchical nature of darling's input.
///
/// These characteristics make for great experiences when using darling-powered crates,
/// provided crates using darling adhere to some best practices:
///
/// 1. Do not attempt to simplify a `darling::Error` into some other error type, such as
///    `syn::Error`. To surface compile errors, instead use `darling::Error::write_errors`.
///    This preserves all span information, suggestions, etc. Wrapping a `darling::Error` in
///    a custom error enum works as-expected and does not force any loss of fidelity.
/// 2. Do not use early return (e.g. the `?` operator) for custom validations. Instead,
///    create a local `Vec` to collect errors as they are encountered and then use
///    `darling::Error::multiple` to create an error containing all those issues if the list
///    is non-empty after validation. This can create very complex custom validation functions;
///    in those cases, split independent "validation chains" out into their own functions to
///    keep the main validator manageable.
/// 3. Use `darling::Error::custom` to create additional errors as-needed, then call `with_span`
///    to ensure those errors appear in the right place. Use `darling::util::SpannedValue` to keep
///    span information around on parsed fields so that custom diagnostics can point to the correct
///    parts of the input AST.
#[derive(Debug)]
#[cfg_attr(test, derive(Clone))]
pub struct Error {
    kind: ErrorKind,
    locations: Vec<String>,
    /// The span to highlight in the emitted diagnostic.
    span: Option<Span>,
}

/// Transform a syn::Path to a readable String
fn path_to_string(path: &syn::Path) -> String {
    path.segments
        .iter()
        .map(|s| s.ident.to_string())
        .collect::<Vec<String>>()
        .join("::")
}

/// Error creation functions
impl Error {
    pub(in error) fn new(kind: ErrorKind) -> Self {
        Error {
            kind,
            locations: Vec::new(),
            span: None,
        }
    }

    /// Creates a new error with a custom message.
    pub fn custom<T: fmt::Display>(msg: T) -> Self {
        Error::new(ErrorKind::Custom(msg.to_string()))
    }

    /// Creates a new error for a field that appears twice in the input.
    pub fn duplicate_field(name: &str) -> Self {
        Error::new(ErrorKind::DuplicateField(name.into()))
    }

    /// Creates a new error for a field that appears twice in the input. Helper to avoid repeating
    /// the syn::Path to String conversion.
    pub fn duplicate_field_path(path: &Path) -> Self {
        Error::duplicate_field(&path_to_string(path))
    }

    /// Creates a new error for a non-optional field that does not appear in the input.
    pub fn missing_field(name: &str) -> Self {
        Error::new(ErrorKind::MissingField(name.into()))
    }

    /// Creates a new error for a field name that appears in the input but does not correspond
    /// to a known field.
    pub fn unknown_field(name: &str) -> Self {
        Error::new(ErrorKind::UnknownField(name.into()))
    }

    /// Creates a new error for a field name that appears in the input but does not correspond
    /// to a known field. Helper to avoid repeating the syn::Path to String conversion.
    pub fn unknown_field_path(path: &Path) -> Self {
        Error::unknown_field(&path_to_string(path))
    }

    /// Creates a new error for a field name that appears in the input but does not correspond to
    /// a known attribute. The second argument is the list of known attributes; if a similar name
    /// is found that will be shown in the emitted error message.
    pub fn unknown_field_with_alts<'a, T, I>(field: &str, alternates: I) -> Self
    where
        T: AsRef<str> + 'a,
        I: IntoIterator<Item = &'a T>,
    {
        Error::new(ErrorUnknownField::with_alts(field, alternates).into())
    }

    /// Creates a new error for a struct or variant that does not adhere to the supported shape.
    pub fn unsupported_shape(shape: &str) -> Self {
        Error::new(ErrorKind::UnsupportedShape(shape.into()))
    }

    pub fn unsupported_format(format: &str) -> Self {
        Error::new(ErrorKind::UnexpectedFormat(format.into()))
    }

    /// Creates a new error for a field which has an unexpected literal type.
    pub fn unexpected_type(ty: &str) -> Self {
        Error::new(ErrorKind::UnexpectedType(ty.into()))
    }

    /// Creates a new error for a field which has an unexpected literal type. This will automatically
    /// extract the literal type name from the passed-in `Lit` and set the span to encompass only the
    /// literal value.
    ///
    /// # Usage
    /// This is most frequently used in overrides of the `FromMeta::from_value` method.
    ///
    /// ```rust
    /// # // pretend darling_core is darling so the doc example looks correct.
    /// # extern crate darling_core as darling;
    /// # extern crate syn;
    ///
    /// use darling::{FromMeta, Error, Result};
    /// use syn::{Lit, LitStr};
    ///
    /// pub struct Foo(String);
    ///
    /// impl FromMeta for Foo {
    ///     fn from_value(value: &Lit) -> Result<Self> {
    ///         if let Lit::Str(ref lit_str) = *value {
    ///             Ok(Foo(lit_str.value()))
    ///         } else {
    ///             Err(Error::unexpected_lit_type(value))
    ///         }
    ///     }
    /// }
    ///
    /// # fn main() {}
    /// ```
    pub fn unexpected_lit_type(lit: &Lit) -> Self {
        Error::unexpected_type(match *lit {
            Lit::Str(_) => "string",
            Lit::ByteStr(_) => "byte string",
            Lit::Byte(_) => "byte",
            Lit::Char(_) => "char",
            Lit::Int(_) => "int",
            Lit::Float(_) => "float",
            Lit::Bool(_) => "bool",
            Lit::Verbatim(_) => "verbatim",
        })
        .with_span(lit)
    }

    /// Creates a new error for a value which doesn't match a set of expected literals.
    pub fn unknown_value(value: &str) -> Self {
        Error::new(ErrorKind::UnknownValue(value.into()))
    }

    /// Creates a new error for a list which did not get enough items to proceed.
    pub fn too_few_items(min: usize) -> Self {
        Error::new(ErrorKind::TooFewItems(min))
    }

    /// Creates a new error when a list got more items than it supports. The `max` argument
    /// is the largest number of items the receiver could accept.
    pub fn too_many_items(max: usize) -> Self {
        Error::new(ErrorKind::TooManyItems(max))
    }

    /// Bundle a set of multiple errors into a single `Error` instance.
    ///
    /// # Panics
    /// This function will panic if `errors.is_empty() == true`.
    pub fn multiple(mut errors: Vec<Error>) -> Self {
        if errors.len() > 1 {
            Error::new(ErrorKind::Multiple(errors))
        } else if errors.len() == 1 {
            errors
                .pop()
                .expect("Error array of length 1 has a first item")
        } else {
            panic!("Can't deal with 0 errors")
        }
    }
}

impl Error {
    /// Create a new error about a literal string that doesn't match a set of known
    /// or permissible values. This function can be made public if the API proves useful
    /// beyond impls for `syn` types.
    pub(crate) fn unknown_lit_str_value(value: &LitStr) -> Self {
        Error::unknown_value(&value.value()).with_span(value)
    }
}

/// Error instance methods
impl Error {
    /// Check if this error is associated with a span in the token stream.
    pub fn has_span(&self) -> bool {
        self.span.is_some()
    }

    /// Tie a span to the error if none is already present. This is used in `darling::FromMeta`
    /// and other traits to attach errors to the most specific possible location in the input
    /// source code.
    ///
    /// All `darling`-built impls, either from the crate or from the proc macro, will call this
    /// when appropriate during parsing, so it should not be necessary to call this unless you have
    /// overridden:
    ///
    /// * `FromMeta::from_meta`
    /// * `FromMeta::from_nested_meta`
    /// * `FromMeta::from_value`
    pub fn with_span<T: Spanned>(mut self, node: &T) -> Self {
        if !self.has_span() {
            self.span = Some(node.span());
        }

        self
    }

    /// Recursively converts a tree of errors to a flattened list.
    pub fn flatten(self) -> Self {
        Error::multiple(self.into_vec())
    }

    fn into_vec(self) -> Vec<Self> {
        if let ErrorKind::Multiple(errors) = self.kind {
            let mut flat = Vec::new();
            for error in errors {
                flat.extend(error.prepend_at(self.locations.clone()).into_vec());
            }

            flat
        } else {
            vec![self]
        }
    }

    /// Adds a location to the error, such as a field or variant.
    /// Locations must be added in reverse order of specificity.
    pub fn at<T: fmt::Display>(mut self, location: T) -> Self {
        self.locations.insert(0, location.to_string());
        self
    }

    /// Adds a location to the error, such as a field or variant.
    /// Locations must be added in reverse order of specificity. This is a helper function to avoid
    /// repeating path to string logic.
    pub fn at_path(self, path: &Path) -> Self {
        self.at(path_to_string(path))
    }

    /// Gets the number of individual errors in this error.
    ///
    /// This function never returns `0`, as it's impossible to construct
    /// a multi-error from an empty `Vec`.
    pub fn len(&self) -> usize {
        self.kind.len()
    }

    /// Adds a location chain to the head of the error's existing locations.
    fn prepend_at(mut self, mut locations: Vec<String>) -> Self {
        if !locations.is_empty() {
            locations.extend(self.locations);
            self.locations = locations;
        }

        self
    }

    /// Gets the location slice.
    #[cfg(test)]
    pub(crate) fn location(&self) -> Vec<&str> {
        self.locations.iter().map(|i| i.as_str()).collect()
    }

    /// Write this error and any children as compile errors into a `TokenStream` to
    /// be returned by the proc-macro.
    ///
    /// The behavior of this method will be slightly different if the `diagnostics` feature
    /// is enabled: In that case, the diagnostics will be emitted immediately by this call,
    /// and an empty `TokenStream` will be returned.
    ///
    /// Return these tokens unmodified to avoid disturbing the attached span information.
    ///
    /// # Usage
    /// ```rust,ignore
    /// // in your proc-macro function
    /// let opts = match MyOptions::from_derive_input(&ast) {
    ///     Ok(val) => val,
    ///     Err(err) => {
    ///         return err.write_errors();
    ///     }
    /// }
    /// ```
    pub fn write_errors(self) -> TokenStream {
        #[cfg(feature = "diagnostics")]
        {
            self.emit();
            quote!()
        }

        #[cfg(not(feature = "diagnostics"))]
        {
            self.flatten()
                .into_iter()
                .map(|e| e.single_to_syn_error().to_compile_error())
                .collect()
        }
    }

    #[cfg(not(feature = "diagnostics"))]
    fn single_to_syn_error(self) -> ::syn::Error {
        match self.span {
            Some(span) => ::syn::Error::new(span, self.kind),
            None => ::syn::Error::new(Span::call_site(), self),
        }
    }

    #[cfg(feature = "diagnostics")]
    fn single_to_diagnostic(self) -> ::proc_macro::Diagnostic {
        use proc_macro::{Diagnostic, Level};

        // Delegate to dedicated error formatters when applicable.
        //
        // If span information is available, don't include the error property path
        // since it's redundant and not consistent with native compiler diagnostics.
        match self.kind {
            ErrorKind::UnknownField(euf) => euf.to_diagnostic(self.span),
            _ => match self.span {
                Some(span) => span.unwrap().error(self.kind.to_string()),
                None => Diagnostic::new(Level::Error, self.to_string()),
            },
        }
    }

    /// Transform this error and its children into a list of compiler diagnostics
    /// and emit them. If the `Error` has associated span information, the diagnostics
    /// will identify the correct location in source code automatically.
    ///
    /// # Stability
    /// This is only available on `nightly` until the compiler `proc_macro_diagnostic`
    /// feature stabilizes. Until then, it may break at any time.
    #[cfg(feature = "diagnostics")]
    pub fn emit(self) {
        for error in self.flatten() {
            error.single_to_diagnostic().emit()
        }
    }

    /// Transform the error into a compiler diagnostic and - if the diagnostic points to
    /// a specific code location - add a spanned help child diagnostic that points to the
    /// parent derived trait.
    ///
    /// This is experimental and therefore not exposed outside the crate.
    #[cfg(feature = "diagnostics")]
    #[allow(dead_code)]
    fn emit_with_macro_help_span(self) {
        use proc_macro::Diagnostic;

        for error in self.flatten() {
            let needs_help = error.has_span();
            let diagnostic = error.single_to_diagnostic();
            Diagnostic::emit(if needs_help {
                diagnostic.span_help(
                    Span::call_site().unwrap(),
                    "Encountered as part of this derive-mode-macro",
                )
            } else {
                diagnostic
            })
        }
    }
}

impl StdError for Error {
    fn description(&self) -> &str {
        &self.kind.description()
    }

    fn cause(&self) -> Option<&dyn StdError> {
        None
    }
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.kind)?;
        if !self.locations.is_empty() {
            write!(f, " at {}", self.locations.join("/"))?;
        }

        Ok(())
    }
}

impl From<syn::Error> for Error {
    fn from(e: syn::Error) -> Self {
        // This impl assumes there is nothing but the message and span that needs to be preserved
        // from the passed-in error. If this changes at some point, a new ErrorKind should be made
        // to hold the syn::Error, and this impl should preserve it unmodified while setting its own
        // span to be a copy of the passed-in error.
        Self {
            span: Some(e.span()),
            ..Self::custom(e)
        }
    }
}

// Don't want to publicly commit to Error supporting equality yet, but
// not having it makes testing very difficult. Note that spans are not
// considered for equality since that would break testing in most cases.
#[cfg(test)]
impl PartialEq for Error {
    fn eq(&self, other: &Self) -> bool {
        self.kind == other.kind && self.locations == other.locations
    }
}

#[cfg(test)]
impl Eq for Error {}

impl IntoIterator for Error {
    type Item = Error;
    type IntoIter = IntoIter;

    fn into_iter(self) -> IntoIter {
        if let ErrorKind::Multiple(errors) = self.kind {
            IntoIter {
                inner: IntoIterEnum::Multiple(errors.into_iter()),
            }
        } else {
            IntoIter {
                inner: IntoIterEnum::Single(iter::once(self)),
            }
        }
    }
}

enum IntoIterEnum {
    Single(iter::Once<Error>),
    Multiple(vec::IntoIter<Error>),
}

impl Iterator for IntoIterEnum {
    type Item = Error;

    fn next(&mut self) -> Option<Self::Item> {
        match *self {
            IntoIterEnum::Single(ref mut content) => content.next(),
            IntoIterEnum::Multiple(ref mut content) => content.next(),
        }
    }
}

/// An iterator that moves out of an `Error`.
pub struct IntoIter {
    inner: IntoIterEnum,
}

impl Iterator for IntoIter {
    type Item = Error;

    fn next(&mut self) -> Option<Error> {
        self.inner.next()
    }
}

#[cfg(test)]
mod tests {
    use super::Error;

    #[test]
    fn flatten_noop() {
        let err = Error::duplicate_field("hello").at("world");
        assert_eq!(err.clone().flatten(), err);
    }

    #[test]
    fn flatten_simple() {
        let err = Error::multiple(vec![
            Error::unknown_field("hello").at("world"),
            Error::missing_field("hell_no").at("world"),
        ])
        .at("foo")
        .flatten();

        assert!(err.location().is_empty());

        let mut err_iter = err.into_iter();

        let first = err_iter.next();
        assert!(first.is_some());
        assert_eq!(first.unwrap().location(), vec!["foo", "world"]);

        let second = err_iter.next();
        assert!(second.is_some());

        assert_eq!(second.unwrap().location(), vec!["foo", "world"]);

        assert!(err_iter.next().is_none());
    }

    #[test]
    fn len_single() {
        let err = Error::duplicate_field("hello");
        assert_eq!(1, err.len());
    }

    #[test]
    fn len_multiple() {
        let err = Error::multiple(vec![
            Error::duplicate_field("hello"),
            Error::missing_field("hell_no"),
        ]);
        assert_eq!(2, err.len());
    }

    #[test]
    fn len_nested() {
        let err = Error::multiple(vec![
            Error::duplicate_field("hello"),
            Error::multiple(vec![
                Error::duplicate_field("hi"),
                Error::missing_field("bye"),
                Error::multiple(vec![Error::duplicate_field("whatsup")]),
            ]),
        ]);

        assert_eq!(4, err.len());
    }
}