1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
//! 
//! **daggy** is a directed acyclic graph data structure library.
//!
//! The most prominent type is [**Dag**](./struct.Dag.html) - a wrapper around [petgraph]
//! (http://bluss.github.io/petulant-avenger-graphlibrary/doc/petgraph/index.html)'s [**Graph**]
//! (http://bluss.github.io/petulant-avenger-graphlibrary/doc/petgraph/graph/struct.Graph.html)
//! data structure, exposing a refined API targeted towards directed acyclic graph related
//! functionality.
//!

#![forbid(unsafe_code)]
#![warn(missing_docs)]


extern crate petgraph as pg;


pub use pg as petgraph;
pub use pg::graph::{EdgeIndex, NodeIndex};
use pg::graph::{DefIndex, GraphIndex, IndexType};
use std::ops::{Index, IndexMut};


/// The Petgraph to be used internally within the Dag for storing/managing nodes and edges.
pub type PetGraph<N, E, Ix> = pg::Graph<N, E, pg::Directed, Ix>;


/// A Directed acyclic graph (DAG) data structure.
///
/// Dag is a thin wrapper around petgraph's `Graph` data structure, providing a refined API for
/// dealing specifically with DAGs.
///
/// Note: The following documentation is adapted from petgraph's [**Graph** documentation]
/// (http://bluss.github.io/petulant-avenger-graphlibrary/doc/petgraph/graph/struct.Graph.html).
///
/// **Dag** is parameterized over the node weight **N**, edge weight **E** and index type **Ix**.
///
/// **NodeIndex** is a type that acts as a reference to nodes, but these are only stable across
/// certain operations. **Removing nodes may shift other indices.** Adding kids to the **Dag**
/// keeps all indices stable, but removing a node will force the last node to shift its index to
/// take its place.
///
/// The fact that the node indices in the **Dag** are numbered in a compact interval from 0 to *n*-1
/// simplifies some graph algorithms.
///
/// The **Ix** parameter is u32 by default. The goal is that you can ignore this parameter
/// completely unless you need a very large **Dag** -- then you can use usize.
///
/// The **Dag** also offers methods for accessing the underlying **Graph**, which can be useful
/// for taking advantage of petgraph's various graph-related algorithms.
#[derive(Clone, Debug)]
pub struct Dag<N, E, Ix: IndexType = DefIndex> {
    graph: PetGraph<N, E, Ix>,
}


/// An iterator yielding indices to the children of some node.
pub type Children<'a, E, Ix> = pg::graph::Neighbors<'a, E, Ix>;

/// A "walker" object that can be used to step through the children of some parent node.
pub struct WalkChildren<Ix: IndexType> {
    walk_edges: pg::graph::WalkEdges<Ix>,
}


/// An iterator yielding indices to the parents of some node.
pub type Parents<'a, E, Ix> = pg::graph::Neighbors<'a, E, Ix>;

/// A "walker" object that can be used to step through the children of some parent node.
pub struct WalkParents<Ix: IndexType> {
    walk_edges: pg::graph::WalkEdges<Ix>,
}


/// An error returned by the `Dag::add_edge` method in the case that adding an edge would have
/// caused the graph to cycle.
#[derive(Copy, Clone, Debug)]
pub struct WouldCycle<E>(pub E);


impl<N, E, Ix = DefIndex> Dag<N, E, Ix> where Ix: IndexType {

    /// Create a new, empty `Dag`.
    pub fn new() -> Self {
        Self::with_capacity(1, 1)
    }

    /// Create a new `Dag` with estimated capacity for its node and edge Vecs.
    pub fn with_capacity(nodes: usize, edges: usize) -> Self {
        Dag { graph: PetGraph::with_capacity(nodes, edges) }
    }

    /// The total number of nodes in the Dag.
    pub fn node_count(&self) -> usize {
        self.graph.node_count()
    }

    /// The total number of edgees in the Dag.
    pub fn edge_count(&self) -> usize {
        self.graph.edge_count()
    }

    /// Borrow the `Dag`'s underlying `PetGraph<N, Ix>`.
    /// All existing indices may be used to index into this `PetGraph` the same way they may be
    /// used to index into the `Dag`.
    pub fn graph(&self) -> &PetGraph<N, E, Ix> {
        &self.graph
    }

    /// Take ownership of the `Dag` and return the internal `PetGraph`.
    /// All existing indices may be used to index into this `PetGraph` the same way they may be
    /// used to index into the `Dag`.
    pub fn into_graph(self) -> PetGraph<N, E, Ix> {
        let Dag { graph } = self;
        graph
    }

    /// Add a new node to the `Dag` with the given weight.
    ///
    /// Computes in **O(1)** time.
    ///
    /// Returns the index of the new node.
    ///
    /// **Note:** If you're adding a new node and immediately adding a single edge to that node from
    /// some other node, consider using the [add_child](./struct.Dag.html#method.add_child) or
    /// [add_parent](./struct.Dag.html#method.add_parent) methods instead for better performance.
    ///
    /// **Panics** if the Graph is at the maximum number of nodes for its index type.
    pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix> {
        self.graph.add_node(weight)
    }

    /// Add a new directed edge to the `Dag` with the given weight.
    ///
    /// The added edge will be in the direction `a` -> `b`
    ///
    /// Checks if the edge would create a cycle in the Graph.
    ///
    /// If adding the edge **would not** cause the graph to cycle, the edge will be added and its
    /// `EdgeIndex` returned.
    ///
    /// If adding the edge **would** cause the graph to cycle, the edge will not be added and
    /// instead a `WouldCycle<E>` error with the given weight will be returned.
    ///
    /// Computes in **O(t)** time where "t" is the time taken to check if adding the edge would
    /// cause a cycle in the graph. See petgraph's [`is_cyclic_directed`]
    /// (http://bluss.github.io/petulant-avenger-graphlibrary/doc/petgraph/algo/fn.is_cyclic_directed.html)
    /// function for more details.
    ///
    /// **Note:** Dag allows adding parallel ("duplicate") edges. If you want to avoid this, use
    /// [`update_edge`](./struct.Dag.html#method.update_edge) instead.
    ///
    /// **Note:** If you're adding a new node and immediately adding a single edge to that node from
    /// some other node, consider using the [add_child](./struct.Dag.html#method.add_child) or
    /// [add_parent](./struct.Dag.html#method.add_parent) methods instead for better performance.
    ///
    /// **Panics if the Graph is at the maximum number of nodes for its index type.
    pub fn add_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E)
        -> Result<EdgeIndex<Ix>, WouldCycle<E>>
    {
        let idx = self.graph.add_edge(a, b, weight);

        // Check if adding the edge has created a cycle.
        // TODO: Once petgraph adds support for re-using visit stack/maps, use that so that we
        // don't have to re-allocate every time `add_edge` is called.
        if pg::algo::is_cyclic_directed(&self.graph) {
            let weight = self.graph.remove_edge(idx).expect("No edge for index");
            Err(WouldCycle(weight))
        } else {
            Ok(idx)
        }
    }

    /// Update the edge from nodes `a` -> `b` with the given weight.
    ///
    /// If the edge doesn't already exist, it will be added using the `add_edge` method.
    ///
    /// Please read the [`add_edge`](./struct.Dag.html#method.add_edge) for more important details.
    ///
    /// Checks if the edge would create a cycle in the Graph.
    ///
    /// Computes in **O(t + e)** time where "t" is the complexity of `add_edge` and e is the number
    /// of edges connected to the nodes a and b.
    ///
    /// Returns the index of the edge, or a `WouldCycle` error if adding the edge would create a
    /// cycle.
    ///
    /// **Note:** If you're adding a new node and immediately adding a single edge to that node from
    /// some parent node, consider using the [`add_child`](./struct.Dag.html#method.add_child)
    /// method instead for better performance.
    ///
    /// **Panics** if the Graph is at the maximum number of nodes for its index type.
    pub fn update_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E)
        -> Result<EdgeIndex<Ix>, WouldCycle<E>>
    {
        if let Some(edge_idx) = self.graph.find_edge(a, b) {
            if let Some(edge) = self.graph.edge_weight_mut(edge_idx) {
                *edge = weight;
                return Ok(edge_idx);
            }
        }
        self.add_edge(a, b, weight)
    }

    /// Add a new edge and parent node to the node at the given `NodeIndex`.
    /// Returns both the edge's `EdgeIndex` and the node's `NodeIndex`.
    ///
    /// node -> edge -> child
    ///
    /// Computes in **O(1)** time.
    ///
    /// This is faster than using `add_node` and `add_edge`. This is because we don't have to check
    /// if the graph would cycle when adding an edge to the new node, as we know it it will be the
    /// only edge connected to that node.
    ///
    /// **Panics** if the given child node doesn't exist.
    ///
    /// **Panics** if the Graph is at the maximum number of edges for its index.
    pub fn add_parent(&mut self, child: NodeIndex<Ix>, edge: E, node: N)
        -> (EdgeIndex<Ix>, NodeIndex<Ix>)
    {
        let parent_node = self.graph.add_node(node);
        let parent_edge = self.graph.add_edge(parent_node, child, edge);
        (parent_edge, parent_node)
    }

    /// Add a new edge and child node to the node at the given `NodeIndex`.
    /// Returns both the edge's `EdgeIndex` and the node's `NodeIndex`.
    ///
    /// child -> edge -> node
    ///
    /// Computes in **O(1)** time.
    ///
    /// This is faster than using `add_node` and `add_edge`. This is because we don't have to check
    /// if the graph would cycle when adding an edge to the new node, as we know it it will be the
    /// only edge connected to that node.
    ///
    /// **Panics** if the given parent node doesn't exist.
    ///
    /// **Panics** if the Graph is at the maximum number of edges for its index.
    pub fn add_child(&mut self, parent: NodeIndex<Ix>, edge: E, node: N)
        -> (EdgeIndex<Ix>, NodeIndex<Ix>)
    {
        let child_node = self.graph.add_node(node);
        let child_edge = self.graph.add_edge(parent, child_node, edge);
        (child_edge, child_node)
    }

    /// Borrow the weight from the node at the given index.
    pub fn node_weight(&self, node: NodeIndex<Ix>) -> Option<&N> {
        self.graph.node_weight(node)
    }

    /// Mutably borrow the weight from the node at the given index.
    pub fn node_weight_mut(&mut self, node: NodeIndex<Ix>) -> Option<&mut N> {
        self.graph.node_weight_mut(node)
    }

    /// Borrow the weight from the edge at the given index.
    pub fn edge_weight(&self, edge: EdgeIndex<Ix>) -> Option<&E> {
        self.graph.edge_weight(edge)
    }

    /// Mutably borrow the weight from the edge at the given index.
    pub fn edge_weight_mut(&mut self, edge: EdgeIndex<Ix>) -> Option<&mut E> {
        self.graph.edge_weight_mut(edge)
    }

    /// Index the `Dag` by two indices.
    /// 
    /// Both indices can be either `NodeIndex`s, `EdgeIndex`s or a combination of the two.
    ///
    /// **Panics** if the indices are equal or if they are out of bounds.
    pub fn index_twice_mut<A, B>(&mut self, a: A, b: B)
        -> (&mut <PetGraph<N, E, Ix> as Index<A>>::Output,
            &mut <PetGraph<N, E, Ix> as Index<B>>::Output) where
        PetGraph<N, E, Ix>: IndexMut<A> + IndexMut<B>,
        A: GraphIndex,
        B: GraphIndex,
    {
        self.graph.index_twice_mut(a, b)
    }

    /// Remove the node at the given index from the `Dag` and return it if it exists.
    ///
    /// Note: Calling this may shift (and in turn invalidate) previously returned node indices!
    pub fn remove_node(&mut self, node: NodeIndex<Ix>) -> Option<N> {
        self.graph.remove_node(node)
    }

    /// Remove an edge and return its weight, or `None` if it didn't exist.
    /// 
    /// Computes in **O(e')** time, where **e'** is the size of four particular edge lists, for the
    /// nodes of **e** and the nodes of another affected edge.
    pub fn remove_edge(&mut self, e: EdgeIndex<Ix>) -> Option<E> {
        self.graph.remove_edge(e)
    }

    /// An iterator over all nodes that are parents to the node at the given index.
    ///
    /// The returned iterator yields `EdgeIndex<Ix>`s.
    pub fn parents(&self, child: NodeIndex<Ix>) -> Parents<E, Ix> {
        self.graph.neighbors_directed(child, pg::Incoming)
    }

    /// A "walker" object that may be used to step through the parents of the given child node.
    ///
    /// Unlike the `Parents` type, `WalkParents` does not borrow the `Dag`'s `PetGraph`.
    pub fn walk_parents(&self, child: NodeIndex<Ix>) -> WalkParents<Ix> {
        let walk_edges = self.graph.walk_edges_directed(child, pg::Incoming);
        WalkParents { walk_edges: walk_edges }
    }

    /// An iterator over all nodes that are children to the node at the given index.
    ///
    /// The returned iterator yields `EdgeIndex<Ix>`s.
    pub fn children(&self, parent: NodeIndex<Ix>) -> Children<E, Ix> {
        self.graph.neighbors_directed(parent, pg::Outgoing)
    }

    /// A "walker" object that may be used to step through the children of the given parent node.
    ///
    /// Unlike the `Children` type, `WalkChildren` does not borrow the `Dag`'s `PetGraph`.
    pub fn walk_children(&self, parent: NodeIndex<Ix>) -> WalkChildren<Ix> {
        let walk_edges = self.graph.walk_edges_directed(parent, pg::Outgoing);
        WalkChildren { walk_edges: walk_edges }
    }

}


impl<N, E, Ix> Index<NodeIndex<Ix>> for Dag<N, E, Ix> where Ix: IndexType {
    type Output = N;
    fn index(&self, index: NodeIndex<Ix>) -> &N {
        &self.graph[index]
    }
}

impl<N, E, Ix> IndexMut<NodeIndex<Ix>> for Dag<N, E, Ix> where Ix: IndexType {
    fn index_mut(&mut self, index: NodeIndex<Ix>) -> &mut N {
        &mut self.graph[index]
    }
}

impl<N, E, Ix> Index<EdgeIndex<Ix>> for Dag<N, E, Ix> where Ix: IndexType {
    type Output = E;
    fn index(&self, index: EdgeIndex<Ix>) -> &E {
        &self.graph[index]
    }
}

impl<N, E, Ix> IndexMut<EdgeIndex<Ix>> for Dag<N, E, Ix> where Ix: IndexType {
    fn index_mut(&mut self, index: EdgeIndex<Ix>) -> &mut E {
        &mut self.graph[index]
    }
}


impl<Ix> WalkChildren<Ix> where Ix: IndexType {

    /// Fetch the next child edge index in the walk for the given `Dag`.
    pub fn next<N, E>(&mut self, dag: &Dag<N, E, Ix>) -> Option<EdgeIndex<Ix>> {
        self.walk_edges.next(&dag.graph)
    }

    /// Fetch the `EdgeIndex` and `NodeIndex` to the next child in the walk for the given `Dag`.
    pub fn next_child<N, E>(&mut self, dag: &Dag<N, E, Ix>)
        -> Option<(EdgeIndex<Ix>, NodeIndex<Ix>)>
    {
        self.walk_edges.next_neighbor(&dag.graph)
    }

}

impl<Ix> WalkParents<Ix> where Ix: IndexType {

    /// Fetch the next parent edge index in the walk for the given `Dag`.
    pub fn next<N, E>(&mut self, dag: &Dag<N, E, Ix>) -> Option<EdgeIndex<Ix>> {
        self.walk_edges.next(&dag.graph)
    }

    /// Fetch the `EdgeIndex` and `NodeIndex` to the next parent in the walk for the given `Dag`.
    pub fn next_parent<N, E>(&mut self, dag: &Dag<N, E, Ix>)
        -> Option<(EdgeIndex<Ix>, NodeIndex<Ix>)>
    {
        self.walk_edges.next_neighbor(&dag.graph)
    }

}

impl<E> ::std::fmt::Display for WouldCycle<E> where E: ::std::fmt::Debug {
    fn fmt(&self, f: &mut ::std::fmt::Formatter) -> Result<(), ::std::fmt::Error> {
        writeln!(f, "{:?}", self)
    }
}

impl<E> ::std::error::Error for WouldCycle<E> where E: ::std::fmt::Debug + ::std::any::Any {
    fn description(&self) -> &str {
        "Adding this input would have caused the graph to cycle!"
    }
}