1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
use crate::actually_private::Private;
use alloc::borrow::Cow;
use alloc::string::String;
use core::fmt::{self, Debug, Display};
use core::marker::{PhantomData, PhantomPinned};
use core::mem::MaybeUninit;
use core::pin::Pin;
use core::slice;
use core::str::{self, Utf8Error};

extern "C" {
    #[link_name = "cxxbridge1$cxx_string$init"]
    fn string_init(this: &mut MaybeUninit<CxxString>, ptr: *const u8, len: usize);
    #[link_name = "cxxbridge1$cxx_string$destroy"]
    fn string_destroy(this: &mut MaybeUninit<CxxString>);
    #[link_name = "cxxbridge1$cxx_string$data"]
    fn string_data(this: &CxxString) -> *const u8;
    #[link_name = "cxxbridge1$cxx_string$length"]
    fn string_length(this: &CxxString) -> usize;
    #[link_name = "cxxbridge1$cxx_string$push"]
    fn string_push(this: Pin<&mut CxxString>, ptr: *const u8, len: usize);
}

/// Binding to C++ `std::string`.
///
/// # Invariants
///
/// As an invariant of this API and the static analysis of the cxx::bridge
/// macro, in Rust code we can never obtain a `CxxString` by value. C++'s string
/// requires a move constructor and may hold internal pointers, which is not
/// compatible with Rust's move behavior. Instead in Rust code we will only ever
/// look at a CxxString through a reference or smart pointer, as in `&CxxString`
/// or `UniquePtr<CxxString>`.
#[repr(C)]
pub struct CxxString {
    _private: [u8; 0],
    _pinned: PhantomData<PhantomPinned>,
}

/// Construct a C++ std::string on the Rust stack.
///
/// # Syntax
///
/// In statement position:
///
/// ```
/// # use cxx::let_cxx_string;
/// # let expression = "";
/// let_cxx_string!(var = expression);
/// ```
///
/// The `expression` may have any type that implements `AsRef<[u8]>`. Commonly
/// it will be a string literal, but for example `&[u8]` and `String` would work
/// as well.
///
/// The macro expands to something resembling `let $var: Pin<&mut CxxString> =
/// /*???*/;`. The resulting [`Pin`] can be deref'd to `&CxxString` as needed.
///
/// # Example
///
/// ```
/// use cxx::{let_cxx_string, CxxString};
///
/// fn f(s: &CxxString) {/* ... */}
///
/// fn main() {
///     let_cxx_string!(s = "example");
///     f(&s);
/// }
/// ```
#[macro_export]
macro_rules! let_cxx_string {
    ($var:ident = $value:expr $(,)?) => {
        let mut cxx_stack_string = $crate::private::StackString::new();
        #[allow(unused_mut, unused_unsafe)]
        let mut $var = match $value {
            let_cxx_string => unsafe { cxx_stack_string.init(let_cxx_string) },
        };
    };
}

impl CxxString {
    /// `CxxString` is not constructible via `new`. Instead, use the
    /// [`let_cxx_string!`] macro.
    pub fn new<T: Private>() -> Self {
        unreachable!()
    }

    /// Returns the length of the string in bytes.
    ///
    /// Matches the behavior of C++ [std::string::size][size].
    ///
    /// [size]: https://en.cppreference.com/w/cpp/string/basic_string/size
    pub fn len(&self) -> usize {
        unsafe { string_length(self) }
    }

    /// Returns true if `self` has a length of zero bytes.
    ///
    /// Matches the behavior of C++ [std::string::empty][empty].
    ///
    /// [empty]: https://en.cppreference.com/w/cpp/string/basic_string/empty
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns a byte slice of this string's contents.
    pub fn as_bytes(&self) -> &[u8] {
        let data = self.as_ptr();
        let len = self.len();
        unsafe { slice::from_raw_parts(data, len) }
    }

    /// Produces a pointer to the first character of the string.
    ///
    /// Matches the behavior of C++ [std::string::data][data].
    ///
    /// Note that the return type may look like `const char *` but is not a
    /// `const char *` in the typical C sense, as C++ strings may contain
    /// internal null bytes. As such, the returned pointer only makes sense as a
    /// string in combination with the length returned by [`len()`][len].
    ///
    /// [data]: https://en.cppreference.com/w/cpp/string/basic_string/data
    /// [len]: #method.len
    pub fn as_ptr(&self) -> *const u8 {
        unsafe { string_data(self) }
    }

    /// Validates that the C++ string contains UTF-8 data and produces a view of
    /// it as a Rust &amp;str, otherwise an error.
    pub fn to_str(&self) -> Result<&str, Utf8Error> {
        str::from_utf8(self.as_bytes())
    }

    /// If the contents of the C++ string are valid UTF-8, this function returns
    /// a view as a Cow::Borrowed &amp;str. Otherwise replaces any invalid UTF-8
    /// sequences with the U+FFFD [replacement character] and returns a
    /// Cow::Owned String.
    ///
    /// [replacement character]: https://doc.rust-lang.org/std/char/constant.REPLACEMENT_CHARACTER.html
    pub fn to_string_lossy(&self) -> Cow<str> {
        String::from_utf8_lossy(self.as_bytes())
    }

    /// Appends a given string slice onto the end of this C++ string.
    pub fn push_str(self: Pin<&mut Self>, s: &str) {
        self.push_bytes(s.as_bytes());
    }

    /// Appends arbitrary bytes onto the end of this C++ string.
    pub fn push_bytes(self: Pin<&mut Self>, bytes: &[u8]) {
        unsafe { string_push(self, bytes.as_ptr(), bytes.len()) }
    }
}

impl Display for CxxString {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        Display::fmt(self.to_string_lossy().as_ref(), f)
    }
}

impl Debug for CxxString {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        Debug::fmt(self.to_string_lossy().as_ref(), f)
    }
}

impl PartialEq for CxxString {
    fn eq(&self, other: &CxxString) -> bool {
        self.as_bytes() == other.as_bytes()
    }
}

impl PartialEq<CxxString> for str {
    fn eq(&self, other: &CxxString) -> bool {
        self.as_bytes() == other.as_bytes()
    }
}

impl PartialEq<str> for CxxString {
    fn eq(&self, other: &str) -> bool {
        self.as_bytes() == other.as_bytes()
    }
}

#[doc(hidden)]
#[repr(C)]
pub struct StackString {
    // Static assertions in cxx.cc validate that this is large enough and
    // aligned enough.
    space: MaybeUninit<[usize; 8]>,
}

impl StackString {
    pub fn new() -> Self {
        StackString {
            space: MaybeUninit::uninit(),
        }
    }

    pub unsafe fn init(&mut self, value: impl AsRef<[u8]>) -> Pin<&mut CxxString> {
        let value = value.as_ref();
        let this = &mut *self.space.as_mut_ptr().cast::<MaybeUninit<CxxString>>();
        string_init(this, value.as_ptr(), value.len());
        Pin::new_unchecked(&mut *this.as_mut_ptr())
    }
}

impl Drop for StackString {
    fn drop(&mut self) {
        unsafe {
            let this = &mut *self.space.as_mut_ptr().cast::<MaybeUninit<CxxString>>();
            string_destroy(this);
        }
    }
}