1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
//! A wrapper around cvode and cvodes from the sundials tool suite.
//!
//! Users should be mostly interested in [`SolverSensi`] and [`SolverNoSensi`].
//!
//! # Building sundials
//!
//! To build sundials, activate the `sundials-sys/build_libraries` feature.
//!
//! # Examples
//!
//! ## Oscillator
//!
//! An oscillatory system defined by `x'' = -k * x`.
//!
//! ### Without sensitivities
//!
//! ```rust
//! use cvode_wrap::*;
//! let y0 = [0., 1.];
//! //define the right-hand-side
//! fn f(_t: Realtype, y: &[Realtype; 2], ydot: &mut [Realtype; 2], k: &Realtype) -> RhsResult {
//!     *ydot = [y[1], -y[0] * k];
//!     RhsResult::Ok
//! }
//! //initialize the solver
//! let mut solver = SolverNoSensi::new(
//!     LinearMultistepMethod::Adams,
//!     f,
//!     0.,
//!     &y0,
//!     1e-4,
//!     AbsTolerance::scalar(1e-4),
//!     1e-2,
//! )
//! .unwrap();
//! //and solve
//! let ts: Vec<_> = (1..100).collect();
//! println!("0,{},{}", y0[0], y0[1]);
//! for &t in &ts {
//!     let (_tret, &[x, xdot]) = solver.step(t as _, StepKind::Normal).unwrap();
//!     println!("{},{},{}", t, x, xdot);
//! }
//! ```
//!
//! ### With sensitivities
//!
//! The sensitivities are computed with respect to `x(0)`, `x'(0)` and `k`.
//!
//! ```rust
//! use cvode_wrap::*;
//! let y0 = [0., 1.];
//! //define the right-hand-side
//! fn f(_t: Realtype, y: &[Realtype; 2], ydot: &mut [Realtype; 2], k: &Realtype) -> RhsResult {
//!     *ydot = [y[1], -y[0] * k];
//!     RhsResult::Ok
//! }
//! //define the sensitivity function for the right hand side
//! fn fs(
//!     _t: Realtype,
//!     y: &[Realtype; 2],
//!     _ydot: &[Realtype; 2],
//!     ys: [&[Realtype; 2]; N_SENSI],
//!     ysdot: [&mut [Realtype; 2]; N_SENSI],
//!     k: &Realtype,
//! ) -> RhsResult {
//!     // Mind that when indexing sensitivities, the first index
//!     // is the parameter index, and the second the state variable
//!     // index
//!     *ysdot[0] = [ys[0][1], -ys[0][0] * k];
//!     *ysdot[1] = [ys[1][1], -ys[1][0] * k];
//!     *ysdot[2] = [ys[2][1], -ys[2][0] * k - y[0]];
//!     RhsResult::Ok
//! }
//!
//! const N_SENSI: usize = 3;
//!
//! // the sensitivities in order are d/dy0[0], d/dy0[1] and d/dk
//! let ys0 = [[1., 0.], [0., 1.], [0., 0.]];
//!
//! //initialize the solver
//! let mut solver = SolverSensi::new(
//!     LinearMultistepMethod::Adams,
//!     f,
//!     fs,
//!     0.,
//!     &y0,
//!     &ys0,
//!     1e-4,
//!     AbsTolerance::scalar(1e-4),
//!     SensiAbsTolerance::scalar([1e-4; N_SENSI]),
//!     1e-2,
//! )
//! .unwrap();
//! //and solve
//! let ts: Vec<_> = (1..100).collect();
//! println!("0,{},{}", y0[0], y0[1]);
//! for &t in &ts {
//!     let (_tret, &[x, xdot], [&[dy0_dy00, dy1_dy00], &[dy0_dy01, dy1_dy01], &[dy0_dk, dy1_dk]]) =
//!         solver.step(t as _, StepKind::Normal).unwrap();
//!     println!(
//!         "{},{},{},{},{},{},{},{},{}",
//!         t, x, xdot, dy0_dy00, dy1_dy00, dy0_dy01, dy1_dy01, dy0_dk, dy1_dk
//!     );
//! }
//! ```
use std::{ffi::c_void, os::raw::c_int, ptr::NonNull};

use sundials_sys::realtype;

mod nvector;
pub use nvector::{NVectorSerial, NVectorSerialHeapAllocated};

mod cvode;
mod cvode_sens;

pub use cvode::Solver as SolverNoSensi;
pub use cvode_sens::Solver as SolverSensi;

/// The floatting-point type sundials was compiled with
pub type Realtype = realtype;

#[repr(i32)]
#[derive(Debug)]
/// An integration method.
pub enum LinearMultistepMethod {
    /// Recomended for non-stiff problems.
    Adams = sundials_sys::CV_ADAMS,
    /// Recommended for stiff problems.
    Bdf = sundials_sys::CV_BDF,
}

/// A return type for the right-hand-side rust function.
///
/// Adapted from Sundials cv-ode guide version 5.7 (BSD Licensed), setcion 4.6.1 :
///
/// > If a recoverable error occurred, `cvode` will attempt to correct,
/// > if the error is unrecoverable, the integration is halted.
/// >
/// > A recoverable failure error return is typically used to flag a value of
/// > the dependent variableythat is “illegal” in some way (e.g., negative where
/// > only a non-negative value is physically meaningful).  If such a return is
/// > made, `cvode` will attempt to recover (possibly repeating the nonlinear solve,
/// > or reducing the step size) in order to avoid this recoverable error return.
pub enum RhsResult {
    /// Indicates that there was no error
    Ok,
    /// Indicate that there was a recoverable error and its code
    RecoverableError(u8),
    /// Indicatest hat there was a non recoverable error
    NonRecoverableError(u8),
}

/// Type of integration step
#[repr(i32)]
pub enum StepKind {
    /// The `NORMAL`option causes the solver to take internal steps
    /// until it has reached or just passed the user-specified time.
    /// The solver then interpolates in order to return an approximate
    /// value of y at the desired time.
    Normal = sundials_sys::CV_NORMAL,
    /// The `CV_ONE_STEP` option tells the solver to take just one
    /// internal step and then return thesolution at the point reached
    /// by that step.
    OneStep = sundials_sys::CV_ONE_STEP,
}

/// The error type for this crate
#[derive(Debug)]
pub enum Error {
    NullPointerError { func_id: &'static str },
    ErrorCode { func_id: &'static str, flag: c_int },
}

/// An enum representing the choice between a scalar or vector absolute tolerance
pub enum AbsTolerance<const SIZE: usize> {
    Scalar(Realtype),
    Vector(NVectorSerialHeapAllocated<SIZE>),
}

impl<const SIZE: usize> AbsTolerance<SIZE> {
    pub fn scalar(atol: Realtype) -> Self {
        AbsTolerance::Scalar(atol)
    }

    pub fn vector(atol: &[Realtype; SIZE]) -> Self {
        let atol = NVectorSerialHeapAllocated::new_from(atol);
        AbsTolerance::Vector(atol)
    }
}

/// An enum representing the choice between scalars or vectors absolute tolerances
/// for sensitivities.
pub enum SensiAbsTolerance<const SIZE: usize, const N_SENSI: usize> {
    Scalar([Realtype; N_SENSI]),
    Vector([NVectorSerialHeapAllocated<SIZE>; N_SENSI]),
}

impl<const SIZE: usize, const N_SENSI: usize> SensiAbsTolerance<SIZE, N_SENSI> {
    pub fn scalar(atol: [Realtype; N_SENSI]) -> Self {
        SensiAbsTolerance::Scalar(atol)
    }

    pub fn vector(atol: &[[Realtype; SIZE]; N_SENSI]) -> Self {
        SensiAbsTolerance::Vector(
            array_init::from_iter(
                atol.iter()
                    .map(|arr| NVectorSerialHeapAllocated::new_from(arr)),
            )
            .unwrap(),
        )
    }
}

/// A short-hand for `std::result::Result<T, crate::Error>`
pub type Result<T> = std::result::Result<T, Error>;

fn check_non_null<T>(ptr: *mut T, func_id: &'static str) -> Result<NonNull<T>> {
    NonNull::new(ptr).ok_or(Error::NullPointerError { func_id })
}

fn check_flag_is_succes(flag: c_int, func_id: &'static str) -> Result<()> {
    if flag == sundials_sys::CV_SUCCESS {
        Ok(())
    } else {
        Err(Error::ErrorCode { flag, func_id })
    }
}

#[repr(C)]
struct CvodeMemoryBlock {
    _private: [u8; 0],
}

#[repr(transparent)]
#[derive(Debug, Clone, Copy)]
struct CvodeMemoryBlockNonNullPtr {
    ptr: NonNull<CvodeMemoryBlock>,
}

impl CvodeMemoryBlockNonNullPtr {
    fn new(ptr: NonNull<CvodeMemoryBlock>) -> Self {
        Self { ptr }
    }

    fn as_raw(self) -> *mut c_void {
        self.ptr.as_ptr() as *mut c_void
    }
}

impl From<NonNull<CvodeMemoryBlock>> for CvodeMemoryBlockNonNullPtr {
    fn from(x: NonNull<CvodeMemoryBlock>) -> Self {
        Self::new(x)
    }
}