logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis lovecruft
// Copyright (c) 2016-2020 Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

// We allow non snake_case names because coordinates in projective space are
// traditionally denoted by the capitalisation of their respective
// counterparts in affine space.  Yeah, you heard me, rustc, I'm gonna have my
// affine and projective cakes and eat both of them too.
#![allow(non_snake_case)]

//! An implementation of [Ristretto][ristretto_main], which provides a
//! prime-order group.
//!
//! # The Ristretto Group
//!
//! Ristretto is a modification of Mike Hamburg's Decaf scheme to work
//! with cofactor-\\(8\\) curves, such as Curve25519.
//!
//! The introduction of the Decaf paper, [_Decaf:
//! Eliminating cofactors through point
//! compression_](https://eprint.iacr.org/2015/673.pdf), notes that while
//! most cryptographic systems require a group of prime order, most
//! concrete implementations using elliptic curve groups fall short –
//! they either provide a group of prime order, but with incomplete or
//! variable-time addition formulae (for instance, most Weierstrass
//! models), or else they provide a fast and safe implementation of a
//! group whose order is not quite a prime \\(q\\), but \\(hq\\) for a
//! small cofactor \\(h\\) (for instance, Edwards curves, which have
//! cofactor at least \\(4\\)).
//!
//! This abstraction mismatch is commonly “handled” by pushing the
//! complexity upwards, adding ad-hoc protocol modifications.  But
//! these modifications require careful analysis and are a recurring
//! source of [vulnerabilities][cryptonote] and [design
//! complications][ed25519_hkd].
//!
//! Instead, Decaf (and Ristretto) use a quotient group to implement a
//! prime-order group using a non-prime-order curve.  This provides
//! the correct abstraction for cryptographic systems, while retaining
//! the speed and safety benefits of an Edwards curve.
//!
//! Decaf is named “after the procedure which divides the effect of
//! coffee by \\(4\\)”.  However, Curve25519 has a cofactor of
//! \\(8\\).  To eliminate its cofactor, Ristretto restricts further;
//! this [additional restriction][ristretto_coffee] gives the
//! _Ristretto_ encoding.
//!
//! More details on why Ristretto is necessary can be found in the
//! [Why Ristretto?][why_ristretto] section of the Ristretto website.
//!
//! Ristretto
//! points are provided in `curve25519-dalek` by the `RistrettoPoint`
//! struct.
//!
//! ## Encoding and Decoding
//!
//! Encoding is done by converting to and from a `CompressedRistretto`
//! struct, which is a typed wrapper around `[u8; 32]`.
//!
//! The encoding is not batchable, but it is possible to
//! double-and-encode in a batch using
//! `RistrettoPoint::double_and_compress_batch`.
//!
//! ## Equality Testing
//!
//! Testing equality of points on an Edwards curve in projective
//! coordinates requires an expensive inversion.  By contrast, equality
//! checking in the Ristretto group can be done in projective
//! coordinates without requiring an inversion, so it is much faster.
//!
//! The `RistrettoPoint` struct implements the
//! `subtle::ConstantTimeEq` trait for constant-time equality
//! checking, and the Rust `Eq` trait for variable-time equality
//! checking.
//!
//! ## Scalars
//!
//! Scalars are represented by the `Scalar` struct.  Each scalar has a
//! canonical representative mod the group order.  To attempt to load
//! a supposedly-canonical scalar, use
//! `Scalar::from_canonical_bytes()`. To check whether a
//! representative is canonical, use `Scalar::is_canonical()`.
//!
//! ## Scalar Multiplication
//!
//! Scalar multiplication on Ristretto points is provided by:
//!
//! * the `*` operator between a `Scalar` and a `RistrettoPoint`, which
//! performs constant-time variable-base scalar multiplication;
//!
//! * the `*` operator between a `Scalar` and a
//! `RistrettoBasepointTable`, which performs constant-time fixed-base
//! scalar multiplication;
//!
//! * an implementation of the
//! [`MultiscalarMul`](../traits/trait.MultiscalarMul.html) trait for
//! constant-time variable-base multiscalar multiplication;
//!
//! * an implementation of the
//! [`VartimeMultiscalarMul`](../traits/trait.VartimeMultiscalarMul.html)
//! trait for variable-time variable-base multiscalar multiplication;
//!
//! ## Random Points and Hashing to Ristretto
//!
//! The Ristretto group comes equipped with an Elligator map.  This is
//! used to implement
//!
//! * `RistrettoPoint::random()`, which generates random points from an
//! RNG;
//!
//! * `RistrettoPoint::from_hash()` and
//! `RistrettoPoint::hash_from_bytes()`, which perform hashing to the
//! group.
//!
//! The Elligator map itself is not currently exposed.
//!
//! ## Implementation
//!
//! The Decaf suggestion is to use a quotient group, such as \\(\mathcal
//! E / \mathcal E[4]\\) or \\(2 \mathcal E / \mathcal E[2] \\), to
//! implement a prime-order group using a non-prime-order curve.
//!
//! This requires only changing
//!
//! 1. the function for equality checking (so that two representatives
//!    of the same coset are considered equal);
//! 2. the function for encoding (so that two representatives of the
//!    same coset are encoded as identical bitstrings);
//! 3. the function for decoding (so that only the canonical encoding of
//!    a coset is accepted).
//!
//! Internally, each coset is represented by a curve point; two points
//! \\( P, Q \\) may represent the same coset in the same way that two
//! points with different \\(X,Y,Z\\) coordinates may represent the
//! same point.  The group operations are carried out with no overhead
//! using Edwards formulas.
//!
//! Notes on the details of the encoding can be found in the
//! [Details][ristretto_notes] section of the Ristretto website.
//!
//! [cryptonote]:
//! https://moderncrypto.org/mail-archive/curves/2017/000898.html
//! [ed25519_hkd]:
//! https://moderncrypto.org/mail-archive/curves/2017/000858.html
//! [ristretto_coffee]:
//! https://en.wikipedia.org/wiki/Ristretto
//! [ristretto_notes]:
//! https://ristretto.group/details/index.html
//! [why_ristretto]:
//! https://ristretto.group/why_ristretto.html
//! [ristretto_main]:
//! https://ristretto.group/

use core::borrow::Borrow;
use core::fmt::Debug;
use core::iter::Sum;
use core::ops::{Add, Neg, Sub};
use core::ops::{AddAssign, SubAssign};
use core::ops::{Mul, MulAssign};

use rand_core::{CryptoRng, RngCore};

use digest::generic_array::typenum::U64;
use digest::Digest;

use constants;
use field::FieldElement;

use subtle::Choice;
use subtle::ConditionallySelectable;
use subtle::ConditionallyNegatable;
use subtle::ConstantTimeEq;

use zeroize::Zeroize;

use edwards::EdwardsBasepointTable;
use edwards::EdwardsPoint;

#[allow(unused_imports)]
use prelude::*;

use scalar::Scalar;

use traits::Identity;
#[cfg(any(feature = "alloc", feature = "std"))]
use traits::{MultiscalarMul, VartimeMultiscalarMul, VartimePrecomputedMultiscalarMul};

#[cfg(not(all(
    feature = "simd_backend",
    any(target_feature = "avx2", target_feature = "avx512ifma")
)))]
use backend::serial::scalar_mul;
#[cfg(all(
    feature = "simd_backend",
    any(target_feature = "avx2", target_feature = "avx512ifma")
))]
use backend::vector::scalar_mul;

// ------------------------------------------------------------------------
// Compressed points
// ------------------------------------------------------------------------

/// A Ristretto point, in compressed wire format.
///
/// The Ristretto encoding is canonical, so two points are equal if and
/// only if their encodings are equal.
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
pub struct CompressedRistretto(pub [u8; 32]);

impl ConstantTimeEq for CompressedRistretto {
    fn ct_eq(&self, other: &CompressedRistretto) -> Choice {
        self.as_bytes().ct_eq(other.as_bytes())
    }
}

impl CompressedRistretto {
    /// Copy the bytes of this `CompressedRistretto`.
    pub fn to_bytes(&self) -> [u8; 32] {
        self.0
    }

    /// View this `CompressedRistretto` as an array of bytes.
    pub fn as_bytes(&self) -> &[u8; 32] {
        &self.0
    }

    /// Construct a `CompressedRistretto` from a slice of bytes.
    ///
    /// # Panics
    ///
    /// If the input `bytes` slice does not have a length of 32.
    pub fn from_slice(bytes: &[u8]) -> CompressedRistretto {
        let mut tmp = [0u8; 32];

        tmp.copy_from_slice(bytes);

        CompressedRistretto(tmp)
    }

    /// Attempt to decompress to an `RistrettoPoint`.
    ///
    /// # Return
    ///
    /// - `Some(RistrettoPoint)` if `self` was the canonical encoding of a point;
    ///
    /// - `None` if `self` was not the canonical encoding of a point.
    pub fn decompress(&self) -> Option<RistrettoPoint> {
        // Step 1. Check s for validity:
        // 1.a) s must be 32 bytes (we get this from the type system)
        // 1.b) s < p
        // 1.c) s is nonnegative
        //
        // Our decoding routine ignores the high bit, so the only
        // possible failure for 1.b) is if someone encodes s in 0..18
        // as s+p in 2^255-19..2^255-1.  We can check this by
        // converting back to bytes, and checking that we get the
        // original input, since our encoding routine is canonical.

        let s = FieldElement::from_bytes(self.as_bytes());
        let s_bytes_check = s.to_bytes();
        let s_encoding_is_canonical =
            &s_bytes_check[..].ct_eq(self.as_bytes());
        let s_is_negative = s.is_negative();

        if s_encoding_is_canonical.unwrap_u8() == 0u8 || s_is_negative.unwrap_u8() == 1u8 {
            return None;
        }

        // Step 2.  Compute (X:Y:Z:T).
        let one = FieldElement::one();
        let ss = s.square();
        let u1 = &one - &ss;      //  1 + as²
        let u2 = &one + &ss;      //  1 - as²    where a=-1
        let u2_sqr = u2.square(); // (1 - as²)²

        // v == ad(1+as²)² - (1-as²)²            where d=-121665/121666
        let v = &(&(-&constants::EDWARDS_D) * &u1.square()) - &u2_sqr;

        let (ok, I) = (&v * &u2_sqr).invsqrt(); // 1/sqrt(v*u_2²)

        let Dx = &I * &u2;         // 1/sqrt(v)
        let Dy = &I * &(&Dx * &v); // 1/u2

        // x == | 2s/sqrt(v) | == + sqrt(4s²/(ad(1+as²)² - (1-as²)²))
        let mut x = &(&s + &s) * &Dx;
        let x_neg = x.is_negative();
        x.conditional_negate(x_neg);

        // y == (1-as²)/(1+as²)
        let y = &u1 * &Dy;

        // t == ((1+as²) sqrt(4s²/(ad(1+as²)² - (1-as²)²)))/(1-as²)
        let t = &x * &y;

        if ok.unwrap_u8() == 0u8 || t.is_negative().unwrap_u8() == 1u8 || y.is_zero().unwrap_u8() == 1u8 {
            None
        } else {
            Some(RistrettoPoint(EdwardsPoint{X: x, Y: y, Z: one, T: t}))
        }
    }
}

impl Identity for CompressedRistretto {
    fn identity() -> CompressedRistretto {
        CompressedRistretto([0u8; 32])
    }
}

impl Default for CompressedRistretto {
    fn default() -> CompressedRistretto {
        CompressedRistretto::identity()
    }
}

// ------------------------------------------------------------------------
// Serde support
// ------------------------------------------------------------------------
// Serializes to and from `RistrettoPoint` directly, doing compression
// and decompression internally.  This means that users can create
// structs containing `RistrettoPoint`s and use Serde's derived
// serializers to serialize those structures.

#[cfg(feature = "serde")]
use serde::{self, Serialize, Deserialize, Serializer, Deserializer};
#[cfg(feature = "serde")]
use serde::de::Visitor;

#[cfg(feature = "serde")]
impl Serialize for RistrettoPoint {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where S: Serializer
    {
        use serde::ser::SerializeTuple;
        let mut tup = serializer.serialize_tuple(32)?;
        for byte in self.compress().as_bytes().iter() {
            tup.serialize_element(byte)?;
        }
        tup.end()
    }
}

#[cfg(feature = "serde")]
impl Serialize for CompressedRistretto {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where S: Serializer
    {
        use serde::ser::SerializeTuple;
        let mut tup = serializer.serialize_tuple(32)?;
        for byte in self.as_bytes().iter() {
            tup.serialize_element(byte)?;
        }
        tup.end()
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for RistrettoPoint {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where D: Deserializer<'de>
    {
        struct RistrettoPointVisitor;

        impl<'de> Visitor<'de> for RistrettoPointVisitor {
            type Value = RistrettoPoint;

            fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
                formatter.write_str("a valid point in Ristretto format")
            }

            fn visit_seq<A>(self, mut seq: A) -> Result<RistrettoPoint, A::Error>
                where A: serde::de::SeqAccess<'de>
            {
                let mut bytes = [0u8; 32];
                for i in 0..32 {
                    bytes[i] = seq.next_element()?
                        .ok_or(serde::de::Error::invalid_length(i, &"expected 32 bytes"))?;
                }
                CompressedRistretto(bytes)
                    .decompress()
                    .ok_or(serde::de::Error::custom("decompression failed"))
            }
        }

        deserializer.deserialize_tuple(32, RistrettoPointVisitor)
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for CompressedRistretto {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where D: Deserializer<'de>
    {
        struct CompressedRistrettoVisitor;

        impl<'de> Visitor<'de> for CompressedRistrettoVisitor {
            type Value = CompressedRistretto;

            fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
                formatter.write_str("32 bytes of data")
            }

            fn visit_seq<A>(self, mut seq: A) -> Result<CompressedRistretto, A::Error>
                where A: serde::de::SeqAccess<'de>
            {
                let mut bytes = [0u8; 32];
                for i in 0..32 {
                    bytes[i] = seq.next_element()?
                        .ok_or(serde::de::Error::invalid_length(i, &"expected 32 bytes"))?;
                }
                Ok(CompressedRistretto(bytes))
            }
        }

        deserializer.deserialize_tuple(32, CompressedRistrettoVisitor)
    }
}

// ------------------------------------------------------------------------
// Internal point representations
// ------------------------------------------------------------------------

/// A `RistrettoPoint` represents a point in the Ristretto group for
/// Curve25519.  Ristretto, a variant of Decaf, constructs a
/// prime-order group as a quotient group of a subgroup of (the
/// Edwards form of) Curve25519.
///
/// Internally, a `RistrettoPoint` is implemented as a wrapper type
/// around `EdwardsPoint`, with custom equality, compression, and
/// decompression routines to account for the quotient.  This means that
/// operations on `RistrettoPoint`s are exactly as fast as operations on
/// `EdwardsPoint`s.
///
#[derive(Copy, Clone)]
pub struct RistrettoPoint(pub(crate) EdwardsPoint);

impl RistrettoPoint {
    /// Compress this point using the Ristretto encoding.
    pub fn compress(&self) -> CompressedRistretto {
        let mut X = self.0.X;
        let mut Y = self.0.Y;
        let Z = &self.0.Z;
        let T = &self.0.T;

        let u1 = &(Z + &Y) * &(Z - &Y);
        let u2 = &X * &Y;
        // Ignore return value since this is always square
        let (_, invsqrt) = (&u1 * &u2.square()).invsqrt();
        let i1 = &invsqrt * &u1;
        let i2 = &invsqrt * &u2;
        let z_inv = &i1 * &(&i2 * T);
        let mut den_inv = i2;

        let iX = &X * &constants::SQRT_M1;
        let iY = &Y * &constants::SQRT_M1;
        let ristretto_magic = &constants::INVSQRT_A_MINUS_D;
        let enchanted_denominator = &i1 * ristretto_magic;

        let rotate = (T * &z_inv).is_negative();

        X.conditional_assign(&iY, rotate);
        Y.conditional_assign(&iX, rotate);
        den_inv.conditional_assign(&enchanted_denominator, rotate);

        Y.conditional_negate((&X * &z_inv).is_negative());

        let mut s = &den_inv * &(Z - &Y);
        let s_is_negative = s.is_negative();
        s.conditional_negate(s_is_negative);

        CompressedRistretto(s.to_bytes())
    }

    /// Double-and-compress a batch of points.  The Ristretto encoding
    /// is not batchable, since it requires an inverse square root.
    ///
    /// However, given input points \\( P\_1, \ldots, P\_n, \\)
    /// it is possible to compute the encodings of their doubles \\(
    /// \mathrm{enc}( [2]P\_1), \ldots, \mathrm{enc}( [2]P\_n ) \\)
    /// in a batch.
    ///
    /// ```
    /// # extern crate curve25519_dalek;
    /// # use curve25519_dalek::ristretto::RistrettoPoint;
    /// extern crate rand_core;
    /// use rand_core::OsRng;
    ///
    /// # // Need fn main() here in comment so the doctest compiles
    /// # // See https://doc.rust-lang.org/book/documentation.html#documentation-as-tests
    /// # fn main() {
    /// let mut rng = OsRng;
    /// let points: Vec<RistrettoPoint> =
    ///     (0..32).map(|_| RistrettoPoint::random(&mut rng)).collect();
    ///
    /// let compressed = RistrettoPoint::double_and_compress_batch(&points);
    ///
    /// for (P, P2_compressed) in points.iter().zip(compressed.iter()) {
    ///     assert_eq!(*P2_compressed, (P + P).compress());
    /// }
    /// # }
    /// ```
    #[cfg(feature = "alloc")]
    pub fn double_and_compress_batch<'a, I>(points: I) -> Vec<CompressedRistretto>
        where I: IntoIterator<Item = &'a RistrettoPoint>
    {
        #[derive(Copy, Clone, Debug)]
        struct BatchCompressState {
            e: FieldElement,
            f: FieldElement,
            g: FieldElement,
            h: FieldElement,
            eg: FieldElement,
            fh: FieldElement,
        }

        impl BatchCompressState {
            fn efgh(&self) -> FieldElement {
                &self.eg * &self.fh
            }
        }

        impl<'a> From<&'a RistrettoPoint> for BatchCompressState {
            fn from(P: &'a RistrettoPoint) -> BatchCompressState {
                let XX = P.0.X.square();
                let YY = P.0.Y.square();
                let ZZ = P.0.Z.square();
                let dTT = &P.0.T.square() * &constants::EDWARDS_D;

                let e = &P.0.X * &(&P.0.Y + &P.0.Y); // = 2*X*Y
                let f = &ZZ + &dTT;                  // = Z^2 + d*T^2
                let g = &YY + &XX;                   // = Y^2 - a*X^2
                let h = &ZZ - &dTT;                  // = Z^2 - d*T^2

                let eg = &e * &g;
                let fh = &f * &h;

                BatchCompressState{ e, f, g, h, eg, fh }
            }
        }

        let states: Vec<BatchCompressState> = points.into_iter().map(BatchCompressState::from).collect();

        let mut invs: Vec<FieldElement> = states.iter().map(|state| state.efgh()).collect();

        FieldElement::batch_invert(&mut invs[..]);

        states.iter().zip(invs.iter()).map(|(state, inv): (&BatchCompressState, &FieldElement)| {
            let Zinv = &state.eg * &inv;
            let Tinv = &state.fh * &inv;

            let mut magic = constants::INVSQRT_A_MINUS_D;

            let negcheck1 = (&state.eg * &Zinv).is_negative();

            let mut e = state.e;
            let mut g = state.g;
            let mut h = state.h;

            let minus_e = -&e;
            let f_times_sqrta = &state.f * &constants::SQRT_M1;

            e.conditional_assign(&state.g,       negcheck1);
            g.conditional_assign(&minus_e,       negcheck1);
            h.conditional_assign(&f_times_sqrta, negcheck1);

            magic.conditional_assign(&constants::SQRT_M1, negcheck1);

            let negcheck2 = (&(&h * &e) * &Zinv).is_negative();

            g.conditional_negate(negcheck2);

            let mut s = &(&h - &g) * &(&magic * &(&g * &Tinv));

            let s_is_negative = s.is_negative();
            s.conditional_negate(s_is_negative);

            CompressedRistretto(s.to_bytes())
        }).collect()
    }


    /// Return the coset self + E[4], for debugging.
    fn coset4(&self) -> [EdwardsPoint; 4] {
        [  self.0
        , &self.0 + &constants::EIGHT_TORSION[2]
        , &self.0 + &constants::EIGHT_TORSION[4]
        , &self.0 + &constants::EIGHT_TORSION[6]
        ]
    }

    /// Computes the Ristretto Elligator map.
    ///
    /// # Note
    ///
    /// This method is not public because it's just used for hashing
    /// to a point -- proper elligator support is deferred for now.
    pub(crate) fn elligator_ristretto_flavor(r_0: &FieldElement) -> RistrettoPoint {
        let i = &constants::SQRT_M1;
        let d = &constants::EDWARDS_D;
        let one_minus_d_sq = &constants::ONE_MINUS_EDWARDS_D_SQUARED;
        let d_minus_one_sq = &constants::EDWARDS_D_MINUS_ONE_SQUARED;
        let mut c = constants::MINUS_ONE;

        let one = FieldElement::one();

        let r = i * &r_0.square();
        let N_s = &(&r + &one) * &one_minus_d_sq;
        let D = &(&c - &(d * &r)) * &(&r + d);

        let (Ns_D_is_sq, mut s) = FieldElement::sqrt_ratio_i(&N_s, &D);
        let mut s_prime = &s * r_0;
        let s_prime_is_pos = !s_prime.is_negative();
        s_prime.conditional_negate(s_prime_is_pos);

        s.conditional_assign(&s_prime, !Ns_D_is_sq);
        c.conditional_assign(&r, !Ns_D_is_sq);

        let N_t = &(&(&c * &(&r - &one)) * &d_minus_one_sq) - &D;
        let s_sq = s.square();

        use backend::serial::curve_models::CompletedPoint;

        // The conversion from W_i is exactly the conversion from P1xP1.
        RistrettoPoint(CompletedPoint{
            X: &(&s + &s) * &D,
            Z: &N_t * &constants::SQRT_AD_MINUS_ONE,
            Y: &FieldElement::one() - &s_sq,
            T: &FieldElement::one() + &s_sq,
        }.to_extended())
    }

    /// Return a `RistrettoPoint` chosen uniformly at random using a user-provided RNG.
    ///
    /// # Inputs
    ///
    /// * `rng`: any RNG which implements the `RngCore + CryptoRng` interface.
    ///
    /// # Returns
    ///
    /// A random element of the Ristretto group.
    ///
    /// # Implementation
    ///
    /// Uses the Ristretto-flavoured Elligator 2 map, so that the
    /// discrete log of the output point with respect to any other
    /// point should be unknown.  The map is applied twice and the
    /// results are added, to ensure a uniform distribution.
    pub fn random<R: RngCore + CryptoRng>(rng: &mut R) -> Self {
        let mut uniform_bytes = [0u8; 64];
        rng.fill_bytes(&mut uniform_bytes);

        RistrettoPoint::from_uniform_bytes(&uniform_bytes)
    }

    /// Hash a slice of bytes into a `RistrettoPoint`.
    ///
    /// Takes a type parameter `D`, which is any `Digest` producing 64
    /// bytes of output.
    ///
    /// Convenience wrapper around `from_hash`.
    ///
    /// # Implementation
    ///
    /// Uses the Ristretto-flavoured Elligator 2 map, so that the
    /// discrete log of the output point with respect to any other
    /// point should be unknown.  The map is applied twice and the
    /// results are added, to ensure a uniform distribution.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate curve25519_dalek;
    /// # use curve25519_dalek::ristretto::RistrettoPoint;
    /// extern crate sha2;
    /// use sha2::Sha512;
    ///
    /// # // Need fn main() here in comment so the doctest compiles
    /// # // See https://doc.rust-lang.org/book/documentation.html#documentation-as-tests
    /// # fn main() {
    /// let msg = "To really appreciate architecture, you may even need to commit a murder";
    /// let P = RistrettoPoint::hash_from_bytes::<Sha512>(msg.as_bytes());
    /// # }
    /// ```
    ///
    pub fn hash_from_bytes<D>(input: &[u8]) -> RistrettoPoint
        where D: Digest<OutputSize = U64> + Default
    {
        let mut hash = D::default();
        hash.update(input);
        RistrettoPoint::from_hash(hash)
    }

    /// Construct a `RistrettoPoint` from an existing `Digest` instance.
    ///
    /// Use this instead of `hash_from_bytes` if it is more convenient
    /// to stream data into the `Digest` than to pass a single byte
    /// slice.
    pub fn from_hash<D>(hash: D) -> RistrettoPoint
        where D: Digest<OutputSize = U64> + Default
    {
        // dealing with generic arrays is clumsy, until const generics land
        let output = hash.finalize();
        let mut output_bytes = [0u8; 64];
        output_bytes.copy_from_slice(&output.as_slice());

        RistrettoPoint::from_uniform_bytes(&output_bytes)
    }

    /// Construct a `RistrettoPoint` from 64 bytes of data.
    ///
    /// If the input bytes are uniformly distributed, the resulting
    /// point will be uniformly distributed over the group, and its
    /// discrete log with respect to other points should be unknown.
    ///
    /// # Implementation
    ///
    /// This function splits the input array into two 32-byte halves,
    /// takes the low 255 bits of each half mod p, applies the
    /// Ristretto-flavored Elligator map to each, and adds the results.
    pub fn from_uniform_bytes(bytes: &[u8; 64]) -> RistrettoPoint {
        let mut r_1_bytes = [0u8; 32];
        r_1_bytes.copy_from_slice(&bytes[0..32]);
        let r_1 = FieldElement::from_bytes(&r_1_bytes);
        let R_1 = RistrettoPoint::elligator_ristretto_flavor(&r_1);

        let mut r_2_bytes = [0u8; 32];
        r_2_bytes.copy_from_slice(&bytes[32..64]);
        let r_2 = FieldElement::from_bytes(&r_2_bytes);
        let R_2 = RistrettoPoint::elligator_ristretto_flavor(&r_2);

        // Applying Elligator twice and adding the results ensures a
        // uniform distribution.
        &R_1 + &R_2
    }
}

impl Identity for RistrettoPoint {
    fn identity() -> RistrettoPoint {
        RistrettoPoint(EdwardsPoint::identity())
    }
}

impl Default for RistrettoPoint {
    fn default() -> RistrettoPoint {
        RistrettoPoint::identity()
    }
}

// ------------------------------------------------------------------------
// Equality
// ------------------------------------------------------------------------

impl PartialEq for RistrettoPoint {
    fn eq(&self, other: &RistrettoPoint) -> bool {
        self.ct_eq(other).unwrap_u8() == 1u8
    }
}

impl ConstantTimeEq for RistrettoPoint {
    /// Test equality between two `RistrettoPoint`s.
    ///
    /// # Returns
    ///
    /// * `Choice(1)` if the two `RistrettoPoint`s are equal;
    /// * `Choice(0)` otherwise.
    fn ct_eq(&self, other: &RistrettoPoint) -> Choice {
        let X1Y2 = &self.0.X * &other.0.Y;
        let Y1X2 = &self.0.Y * &other.0.X;
        let X1X2 = &self.0.X * &other.0.X;
        let Y1Y2 = &self.0.Y * &other.0.Y;

        X1Y2.ct_eq(&Y1X2) | X1X2.ct_eq(&Y1Y2)
    }
}

impl Eq for RistrettoPoint {}

// ------------------------------------------------------------------------
// Arithmetic
// ------------------------------------------------------------------------

impl<'a, 'b> Add<&'b RistrettoPoint> for &'a RistrettoPoint {
    type Output = RistrettoPoint;

    fn add(self, other: &'b RistrettoPoint) -> RistrettoPoint {
        RistrettoPoint(&self.0 + &other.0)
    }
}

define_add_variants!(LHS = RistrettoPoint, RHS = RistrettoPoint, Output = RistrettoPoint);

impl<'b> AddAssign<&'b RistrettoPoint> for RistrettoPoint {
    fn add_assign(&mut self, _rhs: &RistrettoPoint) {
        *self = (self as &RistrettoPoint) + _rhs;
    }
}

define_add_assign_variants!(LHS = RistrettoPoint, RHS = RistrettoPoint);

impl<'a, 'b> Sub<&'b RistrettoPoint> for &'a RistrettoPoint {
    type Output = RistrettoPoint;

    fn sub(self, other: &'b RistrettoPoint) -> RistrettoPoint {
        RistrettoPoint(&self.0 - &other.0)
    }
}

define_sub_variants!(LHS = RistrettoPoint, RHS = RistrettoPoint, Output = RistrettoPoint);

impl<'b> SubAssign<&'b RistrettoPoint> for RistrettoPoint {
    fn sub_assign(&mut self, _rhs: &RistrettoPoint) {
        *self = (self as &RistrettoPoint) - _rhs;
    }
}

define_sub_assign_variants!(LHS = RistrettoPoint, RHS = RistrettoPoint);

impl<T> Sum<T> for RistrettoPoint
where
    T: Borrow<RistrettoPoint>
{
    fn sum<I>(iter: I) -> Self
    where
        I: Iterator<Item = T>
    {
        iter.fold(RistrettoPoint::identity(), |acc, item| acc + item.borrow())
    }
}

impl<'a> Neg for &'a RistrettoPoint {
    type Output = RistrettoPoint;

    fn neg(self) -> RistrettoPoint {
        RistrettoPoint(-&self.0)
    }
}

impl Neg for RistrettoPoint {
    type Output = RistrettoPoint;

    fn neg(self) -> RistrettoPoint {
        -&self
    }
}

impl<'b> MulAssign<&'b Scalar> for RistrettoPoint {
    fn mul_assign(&mut self, scalar: &'b Scalar) {
        let result = (self as &RistrettoPoint) * scalar;
        *self = result;
    }
}

impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoPoint {
    type Output = RistrettoPoint;
    /// Scalar multiplication: compute `scalar * self`.
    fn mul(self, scalar: &'b Scalar) -> RistrettoPoint {
        RistrettoPoint(self.0 * scalar)
    }
}

impl<'a, 'b> Mul<&'b RistrettoPoint> for &'a Scalar {
    type Output = RistrettoPoint;

    /// Scalar multiplication: compute `self * scalar`.
    fn mul(self, point: &'b RistrettoPoint) -> RistrettoPoint {
        RistrettoPoint(self * point.0)
    }
}

define_mul_assign_variants!(LHS = RistrettoPoint, RHS = Scalar);

define_mul_variants!(LHS = RistrettoPoint, RHS = Scalar, Output = RistrettoPoint);
define_mul_variants!(LHS = Scalar, RHS = RistrettoPoint, Output = RistrettoPoint);

// ------------------------------------------------------------------------
// Multiscalar Multiplication impls
// ------------------------------------------------------------------------

// These use iterator combinators to unwrap the underlying points and
// forward to the EdwardsPoint implementations.

#[cfg(feature = "alloc")]
impl MultiscalarMul for RistrettoPoint {
    type Point = RistrettoPoint;

    fn multiscalar_mul<I, J>(scalars: I, points: J) -> RistrettoPoint
    where
        I: IntoIterator,
        I::Item: Borrow<Scalar>,
        J: IntoIterator,
        J::Item: Borrow<RistrettoPoint>,
    {
        let extended_points = points.into_iter().map(|P| P.borrow().0);
        RistrettoPoint(
            EdwardsPoint::multiscalar_mul(scalars, extended_points)
        )
    }
}

#[cfg(feature = "alloc")]
impl VartimeMultiscalarMul for RistrettoPoint {
    type Point = RistrettoPoint;

    fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<RistrettoPoint>
    where
        I: IntoIterator,
        I::Item: Borrow<Scalar>,
        J: IntoIterator<Item = Option<RistrettoPoint>>,
    {
        let extended_points = points.into_iter().map(|opt_P| opt_P.map(|P| P.borrow().0));

        EdwardsPoint::optional_multiscalar_mul(scalars, extended_points).map(RistrettoPoint)
    }
}

/// Precomputation for variable-time multiscalar multiplication with `RistrettoPoint`s.
// This wraps the inner implementation in a facade type so that we can
// decouple stability of the inner type from the stability of the
// outer type.
#[cfg(feature = "alloc")]
pub struct VartimeRistrettoPrecomputation(scalar_mul::precomputed_straus::VartimePrecomputedStraus);

#[cfg(feature = "alloc")]
impl VartimePrecomputedMultiscalarMul for VartimeRistrettoPrecomputation {
    type Point = RistrettoPoint;

    fn new<I>(static_points: I) -> Self
    where
        I: IntoIterator,
        I::Item: Borrow<Self::Point>,
    {
        Self(
            scalar_mul::precomputed_straus::VartimePrecomputedStraus::new(
                static_points.into_iter().map(|P| P.borrow().0),
            ),
        )
    }

    fn optional_mixed_multiscalar_mul<I, J, K>(
        &self,
        static_scalars: I,
        dynamic_scalars: J,
        dynamic_points: K,
    ) -> Option<Self::Point>
    where
        I: IntoIterator,
        I::Item: Borrow<Scalar>,
        J: IntoIterator,
        J::Item: Borrow<Scalar>,
        K: IntoIterator<Item = Option<Self::Point>>,
    {
        self.0
            .optional_mixed_multiscalar_mul(
                static_scalars,
                dynamic_scalars,
                dynamic_points.into_iter().map(|P_opt| P_opt.map(|P| P.0)),
            )
            .map(RistrettoPoint)
    }
}

impl RistrettoPoint {
    /// Compute \\(aA + bB\\) in variable time, where \\(B\\) is the
    /// Ristretto basepoint.
    pub fn vartime_double_scalar_mul_basepoint(
        a: &Scalar,
        A: &RistrettoPoint,
        b: &Scalar,
    ) -> RistrettoPoint {
        RistrettoPoint(
            EdwardsPoint::vartime_double_scalar_mul_basepoint(a, &A.0, b)
        )
    }
}

/// A precomputed table of multiples of a basepoint, used to accelerate
/// scalar multiplication.
///
/// A precomputed table of multiples of the Ristretto basepoint is
/// available in the `constants` module:
/// ```
/// use curve25519_dalek::constants;
/// use curve25519_dalek::scalar::Scalar;
///
/// let a = Scalar::from(87329482u64);
/// let P = &a * &constants::RISTRETTO_BASEPOINT_TABLE;
/// ```
#[derive(Clone)]
pub struct RistrettoBasepointTable(pub(crate) EdwardsBasepointTable);

impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoBasepointTable {
    type Output = RistrettoPoint;

    fn mul(self, scalar: &'b Scalar) -> RistrettoPoint {
        RistrettoPoint(&self.0 * scalar)
    }
}

impl<'a, 'b> Mul<&'a RistrettoBasepointTable> for &'b Scalar {
    type Output = RistrettoPoint;

    fn mul(self, basepoint_table: &'a RistrettoBasepointTable) -> RistrettoPoint {
        RistrettoPoint(self * &basepoint_table.0)
    }
}

impl RistrettoBasepointTable {
    /// Create a precomputed table of multiples of the given `basepoint`.
    pub fn create(basepoint: &RistrettoPoint) -> RistrettoBasepointTable {
        RistrettoBasepointTable(EdwardsBasepointTable::create(&basepoint.0))
    }

    /// Get the basepoint for this table as a `RistrettoPoint`.
    pub fn basepoint(&self) -> RistrettoPoint {
        RistrettoPoint(self.0.basepoint())
    }
}

// ------------------------------------------------------------------------
// Constant-time conditional selection
// ------------------------------------------------------------------------

impl ConditionallySelectable for RistrettoPoint {
    /// Conditionally select between `self` and `other`.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate subtle;
    /// # extern crate curve25519_dalek;
    /// #
    /// use subtle::ConditionallySelectable;
    /// use subtle::Choice;
    /// #
    /// # use curve25519_dalek::traits::Identity;
    /// # use curve25519_dalek::ristretto::RistrettoPoint;
    /// # use curve25519_dalek::constants;
    /// # fn main() {
    ///
    /// let A = RistrettoPoint::identity();
    /// let B = constants::RISTRETTO_BASEPOINT_POINT;
    ///
    /// let mut P = A;
    ///
    /// P = RistrettoPoint::conditional_select(&A, &B, Choice::from(0));
    /// assert_eq!(P, A);
    /// P = RistrettoPoint::conditional_select(&A, &B, Choice::from(1));
    /// assert_eq!(P, B);
    /// # }
    /// ```
    fn conditional_select(
        a: &RistrettoPoint,
        b: &RistrettoPoint,
        choice: Choice,
    ) -> RistrettoPoint {
        RistrettoPoint(EdwardsPoint::conditional_select(&a.0, &b.0, choice))
    }
}

// ------------------------------------------------------------------------
// Debug traits
// ------------------------------------------------------------------------

impl Debug for CompressedRistretto {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "CompressedRistretto: {:?}", self.as_bytes())
    }
}

impl Debug for RistrettoPoint {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        let coset = self.coset4();
        write!(f, "RistrettoPoint: coset \n{:?}\n{:?}\n{:?}\n{:?}",
               coset[0], coset[1], coset[2], coset[3])
    }
}

// ------------------------------------------------------------------------
// Zeroize traits
// ------------------------------------------------------------------------

impl Zeroize for CompressedRistretto {
    fn zeroize(&mut self) {
        self.0.zeroize();
    }
}

impl Zeroize for RistrettoPoint {
    fn zeroize(&mut self) {
        self.0.zeroize();
    }
}

// ------------------------------------------------------------------------
// Tests
// ------------------------------------------------------------------------

#[cfg(test)]
mod test {
    use rand_core::OsRng;

    use scalar::Scalar;
    use constants;
    use edwards::CompressedEdwardsY;
    use traits::{Identity};
    use super::*;

    #[test]
    #[cfg(feature = "serde")]
    fn serde_bincode_basepoint_roundtrip() {
        use bincode;

        let encoded = bincode::serialize(&constants::RISTRETTO_BASEPOINT_POINT).unwrap();
        let enc_compressed = bincode::serialize(&constants::RISTRETTO_BASEPOINT_COMPRESSED).unwrap();
        assert_eq!(encoded, enc_compressed);

        // Check that the encoding is 32 bytes exactly
        assert_eq!(encoded.len(), 32);

        let dec_uncompressed: RistrettoPoint = bincode::deserialize(&encoded).unwrap();
        let dec_compressed: CompressedRistretto = bincode::deserialize(&encoded).unwrap();

        assert_eq!(dec_uncompressed, constants::RISTRETTO_BASEPOINT_POINT);
        assert_eq!(dec_compressed, constants::RISTRETTO_BASEPOINT_COMPRESSED);

        // Check that the encoding itself matches the usual one
        let raw_bytes = constants::RISTRETTO_BASEPOINT_COMPRESSED.as_bytes();
        let bp: RistrettoPoint = bincode::deserialize(raw_bytes).unwrap();
        assert_eq!(bp, constants::RISTRETTO_BASEPOINT_POINT);
    }

    #[test]
    fn scalarmult_ristrettopoint_works_both_ways() {
        let P = constants::RISTRETTO_BASEPOINT_POINT;
        let s = Scalar::from(999u64);

        let P1 = &P * &s;
        let P2 = &s * &P;

        assert!(P1.compress().as_bytes() == P2.compress().as_bytes());
    }

    #[test]
    fn impl_sum() {

        // Test that sum works for non-empty iterators
        let BASE = constants::RISTRETTO_BASEPOINT_POINT;

        let s1 = Scalar::from(999u64);
        let P1 = &BASE * &s1;

        let s2 = Scalar::from(333u64);
        let P2 = &BASE * &s2;

        let vec = vec![P1.clone(), P2.clone()];
        let sum: RistrettoPoint = vec.iter().sum();

        assert_eq!(sum, P1 + P2);

        // Test that sum works for the empty iterator
        let empty_vector: Vec<RistrettoPoint> = vec![];
        let sum: RistrettoPoint = empty_vector.iter().sum();

        assert_eq!(sum, RistrettoPoint::identity());

        // Test that sum works on owning iterators
        let s = Scalar::from(2u64);
        let mapped = vec.iter().map(|x| x * s);
        let sum: RistrettoPoint = mapped.sum();

        assert_eq!(sum, &P1 * &s + &P2 * &s);
    }

    #[test]
    fn decompress_negative_s_fails() {
        // constants::d is neg, so decompression should fail as |d| != d.
        let bad_compressed = CompressedRistretto(constants::EDWARDS_D.to_bytes());
        assert!(bad_compressed.decompress().is_none());
    }

    #[test]
    fn decompress_id() {
        let compressed_id = CompressedRistretto::identity();
        let id = compressed_id.decompress().unwrap();
        let mut identity_in_coset = false;
        for P in &id.coset4() {
            if P.compress() == CompressedEdwardsY::identity() {
                identity_in_coset = true;
            }
        }
        assert!(identity_in_coset);
    }

    #[test]
    fn compress_id() {
        let id = RistrettoPoint::identity();
        assert_eq!(id.compress(), CompressedRistretto::identity());
    }

    #[test]
    fn basepoint_roundtrip() {
        let bp_compressed_ristretto = constants::RISTRETTO_BASEPOINT_POINT.compress();
        let bp_recaf = bp_compressed_ristretto.decompress().unwrap().0;
        // Check that bp_recaf differs from bp by a point of order 4
        let diff = &constants::RISTRETTO_BASEPOINT_POINT.0 - &bp_recaf;
        let diff4 = diff.mul_by_pow_2(2);
        assert_eq!(diff4.compress(), CompressedEdwardsY::identity());
    }

    #[test]
    fn encodings_of_small_multiples_of_basepoint() {
        // Table of encodings of i*basepoint
        // Generated using ristretto.sage
        let compressed = [
            CompressedRistretto([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
            CompressedRistretto([226, 242, 174, 10, 106, 188, 78, 113, 168, 132, 169, 97, 197, 0, 81, 95, 88, 227, 11, 106, 165, 130, 221, 141, 182, 166, 89, 69, 224, 141, 45, 118]),
            CompressedRistretto([106, 73, 50, 16, 247, 73, 156, 209, 127, 236, 181, 16, 174, 12, 234, 35, 161, 16, 232, 213, 185, 1, 248, 172, 173, 211, 9, 92, 115, 163, 185, 25]),
            CompressedRistretto([148, 116, 31, 93, 93, 82, 117, 94, 206, 79, 35, 240, 68, 238, 39, 213, 209, 234, 30, 43, 209, 150, 180, 98, 22, 107, 22, 21, 42, 157, 2, 89]),
            CompressedRistretto([218, 128, 134, 39, 115, 53, 139, 70, 111, 250, 223, 224, 179, 41, 58, 179, 217, 253, 83, 197, 234, 108, 149, 83, 88, 245, 104, 50, 45, 175, 106, 87]),
            CompressedRistretto([232, 130, 177, 49, 1, 107, 82, 193, 211, 51, 112, 128, 24, 124, 247, 104, 66, 62, 252, 203, 181, 23, 187, 73, 90, 184, 18, 196, 22, 15, 244, 78]),
            CompressedRistretto([246, 71, 70, 211, 201, 43, 19, 5, 14, 216, 216, 2, 54, 167, 240, 0, 124, 59, 63, 150, 47, 91, 167, 147, 209, 154, 96, 30, 187, 29, 244, 3]),
            CompressedRistretto([68, 245, 53, 32, 146, 110, 200, 31, 189, 90, 56, 120, 69, 190, 183, 223, 133, 169, 106, 36, 236, 225, 135, 56, 189, 207, 166, 167, 130, 42, 23, 109]),
            CompressedRistretto([144, 50, 147, 216, 242, 40, 126, 190, 16, 226, 55, 77, 193, 165, 62, 11, 200, 135, 229, 146, 105, 159, 2, 208, 119, 213, 38, 60, 221, 85, 96, 28]),
            CompressedRistretto([2, 98, 42, 206, 143, 115, 3, 163, 28, 175, 198, 63, 143, 196, 143, 220, 22, 225, 200, 200, 210, 52, 178, 240, 214, 104, 82, 130, 169, 7, 96, 49]),
            CompressedRistretto([32, 112, 111, 215, 136, 178, 114, 10, 30, 210, 165, 218, 212, 149, 43, 1, 244, 19, 188, 240, 231, 86, 77, 232, 205, 200, 22, 104, 158, 45, 185, 95]),
            CompressedRistretto([188, 232, 63, 139, 165, 221, 47, 165, 114, 134, 76, 36, 186, 24, 16, 249, 82, 43, 198, 0, 74, 254, 149, 135, 122, 199, 50, 65, 202, 253, 171, 66]),
            CompressedRistretto([228, 84, 158, 225, 107, 154, 160, 48, 153, 202, 32, 140, 103, 173, 175, 202, 250, 76, 63, 62, 78, 83, 3, 222, 96, 38, 227, 202, 143, 248, 68, 96]),
            CompressedRistretto([170, 82, 224, 0, 223, 46, 22, 245, 95, 177, 3, 47, 195, 59, 196, 39, 66, 218, 214, 189, 90, 143, 192, 190, 1, 103, 67, 108, 89, 72, 80, 31]),
            CompressedRistretto([70, 55, 107, 128, 244, 9, 178, 157, 194, 181, 246, 240, 197, 37, 145, 153, 8, 150, 229, 113, 111, 65, 71, 124, 211, 0, 133, 171, 127, 16, 48, 30]),
            CompressedRistretto([224, 196, 24, 247, 200, 217, 196, 205, 215, 57, 91, 147, 234, 18, 79, 58, 217, 144, 33, 187, 104, 29, 252, 51, 2, 169, 217, 154, 46, 83, 230, 78]),
        ];
        let mut bp = RistrettoPoint::identity();
        for i in 0..16 {
            assert_eq!(bp.compress(), compressed[i]);
            bp = &bp + &constants::RISTRETTO_BASEPOINT_POINT;
        }
    }

    #[test]
    fn four_torsion_basepoint() {
        let bp = constants::RISTRETTO_BASEPOINT_POINT;
        let bp_coset = bp.coset4();
        for i in 0..4 {
            assert_eq!(bp, RistrettoPoint(bp_coset[i]));
        }
    }

    #[test]
    fn four_torsion_random() {
        let mut rng = OsRng;
        let B = &constants::RISTRETTO_BASEPOINT_TABLE;
        let P = B * &Scalar::random(&mut rng);
        let P_coset = P.coset4();
        for i in 0..4 {
            assert_eq!(P, RistrettoPoint(P_coset[i]));
        }
    }

    #[test]
    fn elligator_vs_ristretto_sage() {
        // Test vectors extracted from ristretto.sage.
        //
        // Notice that all of the byte sequences have bit 255 set to 0; this is because
        // ristretto.sage does not mask the high bit of a field element.  When the high bit is set,
        // the ristretto.sage elligator implementation gives different results, since it takes a
        // different field element as input.
        let bytes: [[u8;32]; 16] = [
            [184, 249, 135, 49, 253, 123, 89, 113, 67, 160, 6, 239, 7, 105, 211, 41, 192, 249, 185, 57, 9, 102, 70, 198, 15, 127, 7, 26, 160, 102, 134, 71],
            [229, 14, 241, 227, 75, 9, 118, 60, 128, 153, 226, 21, 183, 217, 91, 136, 98, 0, 231, 156, 124, 77, 82, 139, 142, 134, 164, 169, 169, 62, 250, 52],
            [115, 109, 36, 220, 180, 223, 99, 6, 204, 169, 19, 29, 169, 68, 84, 23, 21, 109, 189, 149, 127, 205, 91, 102, 172, 35, 112, 35, 134, 69, 186, 34],
            [16, 49, 96, 107, 171, 199, 164, 9, 129, 16, 64, 62, 241, 63, 132, 173, 209, 160, 112, 215, 105, 50, 157, 81, 253, 105, 1, 154, 229, 25, 120, 83],
            [156, 131, 161, 162, 236, 251, 5, 187, 167, 171, 17, 178, 148, 210, 90, 207, 86, 21, 79, 161, 167, 215, 234, 1, 136, 242, 182, 248, 38, 85, 79, 86],
            [251, 177, 124, 54, 18, 101, 75, 235, 245, 186, 19, 46, 133, 157, 229, 64, 10, 136, 181, 185, 78, 144, 254, 167, 137, 49, 107, 10, 61, 10, 21, 25],
            [232, 193, 20, 68, 240, 77, 186, 77, 183, 40, 44, 86, 150, 31, 198, 212, 76, 81, 3, 217, 197, 8, 126, 128, 126, 152, 164, 208, 153, 44, 189, 77],
            [173, 229, 149, 177, 37, 230, 30, 69, 61, 56, 172, 190, 219, 115, 167, 194, 71, 134, 59, 75, 28, 244, 118, 26, 162, 97, 64, 16, 15, 189, 30, 64],
            [106, 71, 61, 107, 250, 117, 42, 151, 91, 202, 212, 100, 52, 188, 190, 21, 125, 218, 31, 18, 253, 241, 160, 133, 57, 242, 3, 164, 189, 68, 111, 75],
            [112, 204, 182, 90, 220, 198, 120, 73, 173, 107, 193, 17, 227, 40, 162, 36, 150, 141, 235, 55, 172, 183, 12, 39, 194, 136, 43, 153, 244, 118, 91, 89],
            [111, 24, 203, 123, 254, 189, 11, 162, 51, 196, 163, 136, 204, 143, 10, 222, 33, 112, 81, 205, 34, 35, 8, 66, 90, 6, 164, 58, 170, 177, 34, 25],
            [225, 183, 30, 52, 236, 82, 6, 183, 109, 25, 227, 181, 25, 82, 41, 193, 80, 77, 161, 80, 242, 203, 79, 204, 136, 245, 131, 110, 237, 106, 3, 58],
            [207, 246, 38, 56, 30, 86, 176, 90, 27, 200, 61, 42, 221, 27, 56, 210, 79, 178, 189, 120, 68, 193, 120, 167, 77, 185, 53, 197, 124, 128, 191, 126],
            [1, 136, 215, 80, 240, 46, 63, 147, 16, 244, 230, 207, 82, 189, 74, 50, 106, 169, 138, 86, 30, 131, 214, 202, 166, 125, 251, 228, 98, 24, 36, 21],
            [210, 207, 228, 56, 155, 116, 207, 54, 84, 195, 251, 215, 249, 199, 116, 75, 109, 239, 196, 251, 194, 246, 252, 228, 70, 146, 156, 35, 25, 39, 241, 4],
            [34, 116, 123, 9, 8, 40, 93, 189, 9, 103, 57, 103, 66, 227, 3, 2, 157, 107, 134, 219, 202, 74, 230, 154, 78, 107, 219, 195, 214, 14, 84, 80],
        ];
        let encoded_images: [CompressedRistretto; 16] = [
            CompressedRistretto([176, 157, 237, 97, 66, 29, 140, 166, 168, 94, 26, 157, 212, 216, 229, 160, 195, 246, 232, 239, 169, 112, 63, 193, 64, 32, 152, 69, 11, 190, 246, 86]),
            CompressedRistretto([234, 141, 77, 203, 181, 225, 250, 74, 171, 62, 15, 118, 78, 212, 150, 19, 131, 14, 188, 238, 194, 244, 141, 138, 166, 162, 83, 122, 228, 201, 19, 26]),
            CompressedRistretto([232, 231, 51, 92, 5, 168, 80, 36, 173, 179, 104, 68, 186, 149, 68, 40, 140, 170, 27, 103, 99, 140, 21, 242, 43, 62, 250, 134, 208, 255, 61, 89]),
            CompressedRistretto([208, 120, 140, 129, 177, 179, 237, 159, 252, 160, 28, 13, 206, 5, 211, 241, 192, 218, 1, 97, 130, 241, 20, 169, 119, 46, 246, 29, 79, 80, 77, 84]),
            CompressedRistretto([202, 11, 236, 145, 58, 12, 181, 157, 209, 6, 213, 88, 75, 147, 11, 119, 191, 139, 47, 142, 33, 36, 153, 193, 223, 183, 178, 8, 205, 120, 248, 110]),
            CompressedRistretto([26, 66, 231, 67, 203, 175, 116, 130, 32, 136, 62, 253, 215, 46, 5, 214, 166, 248, 108, 237, 216, 71, 244, 173, 72, 133, 82, 6, 143, 240, 104, 41]),
            CompressedRistretto([40, 157, 102, 96, 201, 223, 200, 197, 150, 181, 106, 83, 103, 126, 143, 33, 145, 230, 78, 6, 171, 146, 210, 143, 112, 5, 245, 23, 183, 138, 18, 120]),
            CompressedRistretto([220, 37, 27, 203, 239, 196, 176, 131, 37, 66, 188, 243, 185, 250, 113, 23, 167, 211, 154, 243, 168, 215, 54, 171, 159, 36, 195, 81, 13, 150, 43, 43]),
            CompressedRistretto([232, 121, 176, 222, 183, 196, 159, 90, 238, 193, 105, 52, 101, 167, 244, 170, 121, 114, 196, 6, 67, 152, 80, 185, 221, 7, 83, 105, 176, 208, 224, 121]),
            CompressedRistretto([226, 181, 183, 52, 241, 163, 61, 179, 221, 207, 220, 73, 245, 242, 25, 236, 67, 84, 179, 222, 167, 62, 167, 182, 32, 9, 92, 30, 165, 127, 204, 68]),
            CompressedRistretto([226, 119, 16, 242, 200, 139, 240, 87, 11, 222, 92, 146, 156, 243, 46, 119, 65, 59, 1, 248, 92, 183, 50, 175, 87, 40, 206, 53, 208, 220, 148, 13]),
            CompressedRistretto([70, 240, 79, 112, 54, 157, 228, 146, 74, 122, 216, 88, 232, 62, 158, 13, 14, 146, 115, 117, 176, 222, 90, 225, 244, 23, 94, 190, 150, 7, 136, 96]),
            CompressedRistretto([22, 71, 241, 103, 45, 193, 195, 144, 183, 101, 154, 50, 39, 68, 49, 110, 51, 44, 62, 0, 229, 113, 72, 81, 168, 29, 73, 106, 102, 40, 132, 24]),
            CompressedRistretto([196, 133, 107, 11, 130, 105, 74, 33, 204, 171, 133, 221, 174, 193, 241, 36, 38, 179, 196, 107, 219, 185, 181, 253, 228, 47, 155, 42, 231, 73, 41, 78]),
            CompressedRistretto([58, 255, 225, 197, 115, 208, 160, 143, 39, 197, 82, 69, 143, 235, 92, 170, 74, 40, 57, 11, 171, 227, 26, 185, 217, 207, 90, 185, 197, 190, 35, 60]),
            CompressedRistretto([88, 43, 92, 118, 223, 136, 105, 145, 238, 186, 115, 8, 214, 112, 153, 253, 38, 108, 205, 230, 157, 130, 11, 66, 101, 85, 253, 110, 110, 14, 148, 112]),
        ];
        for i in 0..16 {
            let r_0 = FieldElement::from_bytes(&bytes[i]);
            let Q = RistrettoPoint::elligator_ristretto_flavor(&r_0);
            assert_eq!(Q.compress(), encoded_images[i]);
        }
    }

    #[test]
    fn random_roundtrip() {
        let mut rng = OsRng;
        let B = &constants::RISTRETTO_BASEPOINT_TABLE;
        for _ in 0..100 {
            let P = B * &Scalar::random(&mut rng);
            let compressed_P = P.compress();
            let Q = compressed_P.decompress().unwrap();
            assert_eq!(P, Q);
        }
    }

    #[test]
    fn double_and_compress_1024_random_points() {
        let mut rng = OsRng;

        let points: Vec<RistrettoPoint> =
            (0..1024).map(|_| RistrettoPoint::random(&mut rng)).collect();

        let compressed = RistrettoPoint::double_and_compress_batch(&points);

        for (P, P2_compressed) in points.iter().zip(compressed.iter()) {
            assert_eq!(*P2_compressed, (P + P).compress());
        }
    }

    #[test]
    fn vartime_precomputed_vs_nonprecomputed_multiscalar() {
        let mut rng = rand::thread_rng();

        let B = &::constants::RISTRETTO_BASEPOINT_TABLE;

        let static_scalars = (0..128)
            .map(|_| Scalar::random(&mut rng))
            .collect::<Vec<_>>();

        let dynamic_scalars = (0..128)
            .map(|_| Scalar::random(&mut rng))
            .collect::<Vec<_>>();

        let check_scalar: Scalar = static_scalars
            .iter()
            .chain(dynamic_scalars.iter())
            .map(|s| s * s)
            .sum();

        let static_points = static_scalars.iter().map(|s| s * B).collect::<Vec<_>>();
        let dynamic_points = dynamic_scalars.iter().map(|s| s * B).collect::<Vec<_>>();

        let precomputation = VartimeRistrettoPrecomputation::new(static_points.iter());

        let P = precomputation.vartime_mixed_multiscalar_mul(
            &static_scalars,
            &dynamic_scalars,
            &dynamic_points,
        );

        use traits::VartimeMultiscalarMul;
        let Q = RistrettoPoint::vartime_multiscalar_mul(
            static_scalars.iter().chain(dynamic_scalars.iter()),
            static_points.iter().chain(dynamic_points.iter()),
        );

        let R = &check_scalar * B;

        assert_eq!(P.compress(), R.compress());
        assert_eq!(Q.compress(), R.compress());
    }
}