1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
/// Event fired when the view is about to lose focus.
use crate::{
    direction,
    event::{AnyCb, Event, EventResult, Key},
    rect::Rect,
    view::{
        CannotFocus, IntoBoxedView, Selector, SizeCache, View, ViewNotFound,
    },
    Printer, Vec2, With, XY,
};
use log::debug;
use std::cmp::min;
use std::ops::Deref;

/// Arranges its children linearly according to its orientation.
///
/// # Examples
///
/// ```
/// use cursive_core::traits::Resizable;
/// use cursive_core::views::{Button, LinearLayout, TextArea, TextView};
///
/// let linear_layout = LinearLayout::horizontal()
///     .child(TextView::new("Top of the page"))
///     .child(TextArea::new().fixed_size((20, 5)))
///     .child(Button::new("Ok", |s| s.quit()));
/// ```
pub struct LinearLayout {
    children: Vec<Child>,
    orientation: direction::Orientation,
    focus: usize,

    cache: Option<XY<SizeCache>>,
}

struct Child {
    view: Box<dyn View>,

    // The last result from the child's required_size
    // Doesn't have to be what the child actually gets.
    required_size: Vec2,

    last_size: Vec2,

    _weight: usize,
}

impl Child {
    // Compute and caches the required size.
    fn required_size(&mut self, req: Vec2) -> Vec2 {
        self.required_size = self.view.required_size(req);
        self.required_size
    }

    fn layout(&mut self, size: Vec2) {
        self.last_size = size;
        self.view.layout(size);
    }

    fn as_view(&self) -> &dyn View {
        &*self.view
    }
}

struct ChildIterator<I> {
    // Actual iterator on the children
    inner: I,
    // Current offset
    offset: usize,
    // Available size
    available: usize,
    // Orientation for this layout
    orientation: direction::Orientation,
}

struct ChildItem<T> {
    child: T,
    offset: usize,
    length: usize,
}

impl<T> ChildIterator<T> {
    fn new(
        inner: T,
        orientation: direction::Orientation,
        available: usize,
    ) -> Self {
        ChildIterator {
            inner,
            available,
            orientation,
            offset: 0,
        }
    }
}

impl<'a, T: Deref<Target = Child>, I: Iterator<Item = T>> Iterator
    for ChildIterator<I>
{
    type Item = ChildItem<T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next().map(|child| {
            // Save the current offset.
            let offset = self.offset;

            // debug!("Available: {}", self.available);

            let length = min(
                self.available,
                *child.required_size.get(self.orientation),
            );

            // Allocated width
            self.available = self.available.saturating_sub(length);

            self.offset += length;

            ChildItem {
                child,
                offset,
                length,
            }
        })
    }
}

fn cap<'a, I: Iterator<Item = &'a mut usize>>(iter: I, max: usize) {
    let mut available = max;
    for item in iter {
        if *item > available {
            *item = available;
        }

        available -= *item;
    }
}

impl LinearLayout {
    /// Creates a new layout with the given orientation.
    pub fn new(orientation: direction::Orientation) -> Self {
        LinearLayout {
            children: Vec::new(),
            orientation,
            focus: 0,
            cache: None,
        }
    }

    /// Sets the weight of the given child. This weight is currently unused by the layout process.
    ///
    /// # Panics
    ///
    /// Panics if `i >= self.len()`.
    pub fn set_weight(&mut self, i: usize, weight: usize) {
        self.children[i]._weight = weight;
    }

    /// Modifies the weight of the last child added. This weight is currently unused by the layout process.
    ///
    /// It is an error to call this before adding a child (and it will panic).
    #[must_use]
    pub fn weight(mut self, weight: usize) -> Self {
        self.children.last_mut().unwrap()._weight = weight;

        self
    }

    /// Adds a child to the layout.
    ///
    /// Chainable variant.
    #[must_use]
    pub fn child<V: IntoBoxedView + 'static>(self, view: V) -> Self {
        self.with(|s| s.add_child(view))
    }

    /// Adds a child to the layout.
    pub fn add_child<V: IntoBoxedView + 'static>(&mut self, view: V) {
        self.children.push(Child {
            view: view.into_boxed_view(),
            required_size: Vec2::zero(),
            last_size: Vec2::zero(),
            _weight: 0,
        });
        self.invalidate();
    }

    /// Inserts a child at the given position.
    ///
    /// # Panics
    ///
    /// Panics if `i > self.len()`.
    pub fn insert_child<V: IntoBoxedView + 'static>(
        &mut self,
        i: usize,
        view: V,
    ) {
        self.children.insert(
            i,
            Child {
                view: view.into_boxed_view(),
                required_size: Vec2::zero(),
                last_size: Vec2::zero(),
                _weight: 0,
            },
        );
        self.invalidate();
    }

    /// Swaps two children.
    pub fn swap_children(&mut self, i: usize, j: usize) {
        self.children.swap(i, j);
        // No need to invalidate, total size should be the same.
    }

    /// Returns the number of children.
    pub fn len(&self) -> usize {
        self.children.len()
    }

    /// Returns `true` if this view has no children.
    pub fn is_empty(&self) -> bool {
        self.children.is_empty()
    }

    /// Returns index of focused inner view
    pub fn get_focus_index(&self) -> usize {
        self.focus
    }

    /// Attemps to set the focus on the given child.
    ///
    /// Returns `Err(())` if `index >= self.len()`, or if the view at the
    /// given index does not accept focus.
    pub fn set_focus_index(
        &mut self,
        index: usize,
    ) -> Result<EventResult, ViewNotFound> {
        self.children
            .get_mut(index)
            .and_then(|child| {
                child.view.take_focus(direction::Direction::none()).ok()
            })
            .map(|res| res.and(self.set_focus_unchecked(index)))
            .ok_or(ViewNotFound)
    }

    fn set_focus_unchecked(&mut self, index: usize) -> EventResult {
        if index != self.focus {
            let result =
                self.children[self.focus].view.on_event(Event::FocusLost);
            self.focus = index;
            result
        } else {
            EventResult::Consumed(None)
        }
    }

    // Invalidate the view, to request a layout next time
    fn invalidate(&mut self) {
        self.cache = None;
    }

    /// Creates a new vertical layout.
    pub fn vertical() -> Self {
        LinearLayout::new(direction::Orientation::Vertical)
    }

    /// Creates a new horizontal layout.
    pub fn horizontal() -> Self {
        LinearLayout::new(direction::Orientation::Horizontal)
    }

    /// Returns a reference to a child.
    pub fn get_child(&self, i: usize) -> Option<&dyn View> {
        self.children.get(i).map(|child| &*child.view)
    }

    /// Returns a mutable reference to a child.
    pub fn get_child_mut(&mut self, i: usize) -> Option<&mut dyn View> {
        // Anything could happen to the child view, so bust the cache.
        self.invalidate();
        self.children.get_mut(i).map(|child| &mut *child.view)
    }

    /// Removes all children from this view.
    pub fn clear(&mut self) {
        self.invalidate();
        self.children.clear();
    }

    /// Removes a child.
    ///
    /// If `i` is within bounds, the removed child will be returned.
    pub fn remove_child(&mut self, i: usize) -> Option<Box<dyn View>> {
        if i < self.children.len() {
            // Any alteration means we should invalidate the cache.
            self.invalidate();

            // Keep the same view focused.
            if self.focus > i
                || (self.focus != 0 && self.focus == self.children.len() - 1)
            {
                self.focus -= 1;
            }

            // Return the wrapped view
            Some(self.children.remove(i).view)
        } else {
            // This includes empty list
            None
        }
    }

    /// Looks for the child containing a view with the given name.
    ///
    /// Returns `Some(i)` if `self.get_child(i)` has the given name, or
    /// contains a view with the given name.
    ///
    /// Returns `None` if the given name was not found.
    pub fn find_child_from_name(&mut self, name: &str) -> Option<usize> {
        let selector = Selector::Name(name);
        for (i, c) in self.children.iter_mut().enumerate() {
            let mut found = false;
            c.view.call_on_any(&selector, &mut |_| found = true);
            if found {
                return Some(i);
            }
        }
        None
    }

    // If the cache can be used, return the cached size.
    // Otherwise, return None.
    fn get_cache(&self, req: Vec2) -> Option<Vec2> {
        match self.cache {
            None => None,
            Some(ref cache) => {
                // Is our cache even valid?
                // Also, is any child invalidating the layout?
                if cache.zip_map(req, SizeCache::accept).both()
                    && self.children_are_sleeping()
                {
                    Some(cache.map(|s| s.value))
                } else {
                    None
                }
            }
        }
    }

    fn children_are_sleeping(&self) -> bool {
        !self
            .children
            .iter()
            .map(Child::as_view)
            .any(View::needs_relayout)
    }

    /// Returns a mutable iterator starting with the child in focus
    fn iter_mut<'a>(
        &'a mut self,
        from_focus: bool,
        source: direction::Relative,
    ) -> Box<dyn Iterator<Item = (usize, &mut Child)> + 'a> {
        match source {
            direction::Relative::Front => {
                let start = if from_focus { self.focus } else { 0 };

                Box::new(self.children.iter_mut().enumerate().skip(start))
            }
            direction::Relative::Back => {
                let end = if from_focus {
                    self.focus + 1
                } else {
                    self.children.len()
                };
                Box::new(self.children[..end].iter_mut().enumerate().rev())
            }
        }
    }

    // Attempt to move the focus, coming from the given direction.
    //
    // Consumes the event if the focus was moved, otherwise ignores it.
    fn move_focus(&mut self, source: direction::Direction) -> EventResult {
        source
            .relative(self.orientation)
            .and_then(|rel| {
                // The iterator starts at the focused element.
                // We don't want that one.
                self.iter_mut(true, rel)
                    .skip(1)
                    .find_map(|p| try_focus(p, source))
            })
            .map_or(EventResult::Ignored, |(i, res)| {
                res.and(self.set_focus_unchecked(i))
            })
    }

    // Move the focus to the selected view if needed.
    //
    // Does nothing if the event is not a `MouseEvent`.
    fn check_focus_grab(&mut self, event: &Event) -> Option<EventResult> {
        if let Event::Mouse {
            offset,
            position,
            event,
        } = *event
        {
            if !event.grabs_focus() {
                return None;
            }

            let position = match position.checked_sub(offset) {
                None => return None,
                Some(pos) => pos,
            };

            // Find the selected child
            // Let's only care about the coordinate for our orientation.
            let position = *position.get(self.orientation);

            // Iterate on the views and find the one
            // We need a mutable ref to call take_focus later on.
            for (i, item) in ChildIterator::new(
                self.children.iter_mut(),
                self.orientation,
                // TODO: get actual width (not super important)
                usize::max_value(),
            )
            .enumerate()
            {
                // Get the child size:
                // this will give us the allowed window for a click.
                let child_size = item.child.last_size.get(self.orientation);

                if item.offset + child_size <= position {
                    continue;
                }

                return item
                    .child
                    .view
                    .take_focus(direction::Direction::none())
                    .ok()
                    .map(|res| res.and(self.set_focus_unchecked(i)));
            }
        }
        None
    }
}

fn try_focus(
    (i, child): (usize, &mut Child),
    source: direction::Direction,
) -> Option<(usize, EventResult)> {
    child.view.take_focus(source).ok().map(|res| (i, res))
}

impl View for LinearLayout {
    fn draw(&self, printer: &Printer) {
        // Use pre-computed sizes
        // debug!("Pre loop!");
        for (i, item) in ChildIterator::new(
            self.children.iter(),
            self.orientation,
            *printer.size.get(self.orientation),
        )
        .enumerate()
        {
            // debug!("Printer size: {:?}", printer.size);
            // debug!("Child size: {:?}", item.child.required_size);
            // debug!("Offset: {:?}", item.offset);
            let printer = &printer
                .offset(self.orientation.make_vec(item.offset, 0))
                .cropped(item.child.last_size)
                .focused(i == self.focus);
            item.child.view.draw(printer);
        }
    }

    fn needs_relayout(&self) -> bool {
        if self.cache.is_none() {
            return true;
        }

        !self.children_are_sleeping()
    }

    fn layout(&mut self, size: Vec2) {
        if self.get_cache(size).is_none() {
            // Build the cache if needed.
            self.required_size(size);
        }

        // We'll use this guy a few times, but it's a mouthful...
        let o = self.orientation;

        for item in
            ChildIterator::new(self.children.iter_mut(), o, *size.get(o))
        {
            // Every item has the same size orthogonal to the layout
            let size = size.with_axis(o, item.length);

            item.child.layout(size);
        }
    }

    fn required_size(&mut self, req: Vec2) -> Vec2 {
        // Did anything change since last time?
        if let Some(size) = self.get_cache(req) {
            return size;
        }
        debug!("Req: {:?}", req);

        // First, make a naive scenario: everything will work fine.
        let ideal_sizes: Vec<Vec2> = self
            .children
            .iter_mut()
            .map(|c| c.required_size(req))
            .collect();
        debug!("Ideal sizes: {:?}", ideal_sizes);
        let ideal = self.orientation.stack(ideal_sizes.iter().copied());
        debug!("Ideal result: {:?}", ideal);

        // Does it fit?
        if ideal.fits_in(req) {
            // Champagne!
            self.cache = Some(SizeCache::build(ideal, req));
            return ideal;
        }

        // Ok, so maybe it didn't. Budget cuts, everyone.
        // Let's pretend we have almost no space in this direction.
        // budget_req is the dummy requirements, in an extreme budget
        // situation.
        let budget_req = req.with_axis(self.orientation, 1);
        debug!("Budget req: {:?}", budget_req);

        // See how they like it that way.
        // This is, hopefully, the absolute minimum these views will accept.
        let min_sizes: Vec<Vec2> = self
            .children
            .iter_mut()
            .map(|c| c.required_size(budget_req))
            .collect();
        let desperate = self.orientation.stack(min_sizes.iter().copied());
        debug!("Min sizes: {:?}", min_sizes);
        debug!("Desperate: {:?}", desperate);

        // This is the lowest we'll ever go. It better fit at least.
        let orientation = self.orientation;
        if desperate.get(orientation) > req.get(orientation) {
            // Just give up...
            // TODO: hard-cut
            cap(
                self.children
                    .iter_mut()
                    .map(|c| c.required_size.get_mut(orientation)),
                *req.get(self.orientation),
            );

            // TODO: print some error message or something
            debug!("Seriously? {:?} > {:?}???", desperate, req);
            // self.cache = Some(SizeCache::build(desperate, req));
            self.cache = None;
            return desperate;
        }

        // So now that we know we _can_ make it all fit, we can redistribute
        // the extra space we have.

        // This here is how much we're generously offered
        // (We just checked that req >= desperate, so the subtraction is safe
        let mut available =
            self.orientation.get(&(req.saturating_sub(desperate)));
        debug!("Available: {:?}", available);

        // Here, we have to make a compromise between the ideal
        // and the desperate solutions.
        // This is the vector of (ideal - minimum) sizes for each view.
        // (which is how much they would like to grow)
        let mut overweight: Vec<(usize, usize)> = ideal_sizes
            .iter()
            .map(|v| self.orientation.get(v))
            .zip(min_sizes.iter().map(|v| self.orientation.get(v)))
            .map(|(a, b)| a.saturating_sub(b))
            .enumerate()
            .collect();
        debug!("Overweight: {:?}", overweight);

        // So... distribute `available` to reduce the overweight...
        // TODO: use child weight in the distribution...

        // We'll give everyone his share of what we have left,
        // starting with those who ask the least.
        overweight.sort_by_key(|&(_, weight)| weight);
        let mut allocations = vec![0; overweight.len()];

        for (i, &(j, weight)) in overweight.iter().enumerate() {
            // This is the number of people we still have to feed.
            let remaining = overweight.len() - i;
            // How much we can spare on each one
            let budget = available / remaining;
            // Maybe he doesn't even need that much?
            let spent = min(budget, weight);
            allocations[j] = spent;
            available -= spent;
        }
        debug!("Allocations: {:?}", allocations);

        // Final lengths are the minimum ones + generous allocations
        let final_lengths: Vec<Vec2> = min_sizes
            .iter()
            .map(|v| self.orientation.get(v))
            .zip(allocations.iter())
            .map(|(a, b)| a + b)
            .map(|l| req.with_axis(self.orientation, l))
            .collect();
        debug!("Final sizes: {:?}", final_lengths);

        // Let's ask everyone one last time. Everyone should be happy.
        // (But they may ask more on the other axis.)
        let final_sizes: Vec<Vec2> = self
            .children
            .iter_mut()
            .enumerate()
            .map(|(i, c)| c.required_size(final_lengths[i]))
            .collect();
        debug!("Final sizes2: {:?}", final_sizes);

        // Let's stack everything to see what it looks like.
        let compromise = self.orientation.stack(final_sizes.iter().copied());

        // Phew, that was a lot of work! I'm not doing it again.
        self.cache = Some(SizeCache::build(compromise, req));

        compromise
    }

    fn take_focus(
        &mut self,
        source: direction::Direction,
    ) -> Result<EventResult, CannotFocus> {
        // In what order will we iterate on the children?
        let rel = source.relative(self.orientation);

        // We activate from_focus only if coming from the "sides".
        let focus_res = self
            .iter_mut(rel.is_none(), rel.unwrap_or(direction::Relative::Front))
            .find_map(|p| try_focus(p, source));

        if let Some((next_focus, res)) = focus_res {
            // No "FocusLost" here, since we didn't have focus before.
            self.focus = next_focus;
            Ok(res)
        } else {
            Err(CannotFocus)
        }
    }

    fn on_event(&mut self, event: Event) -> EventResult {
        if self.is_empty() {
            return EventResult::Ignored;
        }

        let res = self
            .check_focus_grab(&event)
            .unwrap_or(EventResult::Ignored);

        let result = {
            let mut iterator = ChildIterator::new(
                self.children.iter_mut(),
                self.orientation,
                usize::max_value(),
            );
            let item = iterator.nth(self.focus).unwrap();
            let offset = self.orientation.make_vec(item.offset, 0);
            item.child.view.on_event(event.relativized(offset))
        };
        res.and(match result {
            EventResult::Ignored => match event {
                Event::Shift(Key::Tab) if self.focus > 0 => {
                    self.move_focus(direction::Direction::back())
                }
                Event::Key(Key::Tab)
                    if self.focus + 1 < self.children.len() =>
                {
                    self.move_focus(direction::Direction::front())
                }
                Event::Key(Key::Left)
                    if self.orientation
                        == direction::Orientation::Horizontal
                        && self.focus > 0 =>
                {
                    self.move_focus(direction::Direction::right())
                }
                Event::Key(Key::Up)
                    if self.orientation
                        == direction::Orientation::Vertical
                        && self.focus > 0 =>
                {
                    self.move_focus(direction::Direction::down())
                }
                Event::Key(Key::Right)
                    if self.orientation
                        == direction::Orientation::Horizontal
                        && self.focus + 1 < self.children.len() =>
                {
                    self.move_focus(direction::Direction::left())
                }
                Event::Key(Key::Down)
                    if self.orientation
                        == direction::Orientation::Vertical
                        && self.focus + 1 < self.children.len() =>
                {
                    self.move_focus(direction::Direction::up())
                }
                _ => EventResult::Ignored,
            },
            res => res,
        })
    }

    fn call_on_any<'a>(
        &mut self,
        selector: &Selector<'_>,
        callback: AnyCb<'a>,
    ) {
        for child in &mut self.children {
            child.view.call_on_any(selector, callback);
        }
    }

    fn focus_view(
        &mut self,
        selector: &Selector<'_>,
    ) -> Result<EventResult, ViewNotFound> {
        for (i, child) in self.children.iter_mut().enumerate() {
            if child.view.focus_view(selector).is_ok() {
                return Ok(self.set_focus_unchecked(i));
            }
        }

        Err(ViewNotFound)
    }

    fn important_area(&self, size: Vec2) -> Rect {
        if self.is_empty() {
            // Return dummy area if we are empty.
            return Rect::from_size(Vec2::zero(), size);
        }

        // Pick the focused item, with its offset
        let item = {
            let mut iterator = ChildIterator::new(
                self.children.iter(),
                self.orientation,
                usize::max_value(),
            );
            iterator.nth(self.focus).unwrap()
        };

        // Make a vector offset from the scalar value
        let offset = self.orientation.make_vec(item.offset, 0);

        // And ask the child its own area.
        let rect = item.child.view.important_area(item.child.last_size);

        // Add `offset` to the rect.
        rect + offset
    }
}