1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
use direction::Orientation;
use std::iter;

/// A generic structure with a value for each axis.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct XY<T> {
    /// X-axis value
    pub x: T,
    /// Y-axis value
    pub y: T,
}

impl<T> IntoIterator for XY<T> {
    type Item = T;
    type IntoIter = iter::Chain<iter::Once<T>, iter::Once<T>>;

    fn into_iter(self) -> Self::IntoIter {
        iter::once(self.x).chain(iter::once(self.y))
    }
}

impl<T> XY<T> {
    /// Creates a new `XY` from the given values.
    pub fn new(x: T, y: T) -> Self {
        XY { x, y }
    }

    /// Swaps the x and y values.
    pub fn swap(self) -> Self {
        XY::new(self.y, self.x)
    }

    /// Returns `f(self.x, self.y)`
    pub fn fold<U, F>(self, f: F) -> U
    where
        F: FnOnce(T, T) -> U,
    {
        f(self.x, self.y)
    }

    /// Creates a new `XY` by applying `f` to `x` and `y`.
    pub fn map<U, F>(self, f: F) -> XY<U>
    where
        F: Fn(T) -> U,
    {
        XY::new(f(self.x), f(self.y))
    }

    /// Applies `f` on axis where `condition` is true.
    ///
    /// Carries over `self` otherwise.
    pub fn map_if<F>(self, condition: XY<bool>, f: F) -> Self
    where
        F: Fn(T) -> T,
    {
        self.zip_map(condition, |v, c| if c { f(v) } else { v })
    }

    /// Applies `f` on axis where `condition` is true.
    ///
    /// Returns `None` otherwise.
    pub fn run_if<F, U>(self, condition: XY<bool>, f: F) -> XY<Option<U>>
    where
        F: Fn(T) -> U,
    {
        self.zip_map(condition, |v, c| if c { Some(f(v)) } else { None })
    }

    /// Creates a new `XY` by applying `f` to `x`, and carrying `y` over.
    pub fn map_x<F>(self, f: F) -> Self
    where
        F: FnOnce(T) -> T,
    {
        XY::new(f(self.x), self.y)
    }

    /// Creates a new `XY` by applying `f` to `y`, and carrying `x` over.
    pub fn map_y<F>(self, f: F) -> Self
    where
        F: FnOnce(T) -> T,
    {
        XY::new(self.x, f(self.y))
    }

    /// Destructure self into a pair.
    pub fn pair(self) -> (T, T) {
        (self.x, self.y)
    }

    /// Return a `XY` with references to this one's values.
    pub fn as_ref(&self) -> XY<&T> {
        XY::new(&self.x, &self.y)
    }

    /// Creates an iterator that returns references to `x`, then `y`.
    pub fn iter(&self) -> iter::Chain<iter::Once<&T>, iter::Once<&T>> {
        iter::once(&self.x).chain(iter::once(&self.y))
    }

    /// Returns a reference to the value on the given axis.
    pub fn get(&self, o: Orientation) -> &T {
        match o {
            Orientation::Horizontal => &self.x,
            Orientation::Vertical => &self.y,
        }
    }

    /// Returns a mutable reference to the value on the given axis.
    pub fn get_mut(&mut self, o: Orientation) -> &mut T {
        match o {
            Orientation::Horizontal => &mut self.x,
            Orientation::Vertical => &mut self.y,
        }
    }

    /// Returns a new `XY` of tuples made by zipping `self` and `other`.
    pub fn zip<U>(self, other: XY<U>) -> XY<(T, U)> {
        XY::new((self.x, other.x), (self.y, other.y))
    }

    /// Returns a new `XY` of tuples made by zipping `self`, `a` and `b`.
    pub fn zip3<U, V>(self, a: XY<U>, b: XY<V>) -> XY<(T, U, V)> {
        XY::new((self.x, a.x, b.x), (self.y, a.y, b.y))
    }

    /// Returns a new `XY` of tuples made by zipping `self`, `a`, `b` and `c`.
    pub fn zip4<U, V, W>(
        self, a: XY<U>, b: XY<V>, c: XY<W>,
    ) -> XY<(T, U, V, W)> {
        XY::new((self.x, a.x, b.x, c.x), (self.y, a.y, b.y, c.y))
    }

    /// Returns a new `XY` of tuples made by zipping `self`, `a`, `b`, `c` and `d`.
    pub fn zip5<U, V, W, Z>(
        self, a: XY<U>, b: XY<V>, c: XY<W>, d: XY<Z>,
    ) -> XY<(T, U, V, W, Z)> {
        XY::new((self.x, a.x, b.x, c.x, d.x), (self.y, a.y, b.y, c.y, d.y))
    }

    /// Returns a new `XY` by calling `f` on `self` and `other` for each axis.
    pub fn zip_map<U, V, F>(self, other: XY<U>, f: F) -> XY<V>
    where
        F: Fn(T, U) -> V,
    {
        XY::new(f(self.x, other.x), f(self.y, other.y))
    }

    /// For each axis, keep the element from `self` if `keep` is `true`.
    pub fn keep(self, keep: XY<bool>) -> XY<Option<T>> {
        keep.select(self)
    }
}

impl<T: Clone> XY<T> {
    /// Returns a new `XY` with the axis `o` set to `value`.
    pub fn with_axis(&self, o: Orientation, value: T) -> Self {
        let mut new = self.clone();
        *o.get_ref(&mut new) = value;
        new
    }

    /// Returns a new `XY` with the axis `o` set to the value from `other`.
    pub fn with_axis_from(&self, o: Orientation, other: &Self) -> Self {
        let mut new = self.clone();
        new.set_axis_from(o, other);
        new
    }

    /// Sets the axis `o` on `self` to the value from `other`.
    pub fn set_axis_from(&mut self, o: Orientation, other: &Self) {
        *o.get_ref(self) = o.get(other);
    }
}

impl<T> XY<Option<T>> {
    /// Returns a new `XY` by calling `unwrap_or` on each axis.
    pub fn unwrap_or(self, other: XY<T>) -> XY<T> {
        self.zip_map(other, Option::unwrap_or)
    }
}

impl XY<bool> {
    /// Returns `true` if any of `x` or `y` is `true`.
    pub fn any(self) -> bool {
        use std::ops::BitOr;
        self.fold(BitOr::bitor)
    }

    /// Returns `true` if both `x` and `y` are `true`.
    pub fn both(self) -> bool {
        use std::ops::BitAnd;
        self.fold(BitAnd::bitand)
    }

    /// For each axis, keeps elements from `other` if `self` is `true`.
    pub fn select<T>(self, other: XY<T>) -> XY<Option<T>> {
        self.zip_map(other, |keep, o| if keep { Some(o) } else { None })
    }

    /// For each axis, selects `if_true` if `self` is true, else `if_false`.
    pub fn select_or<T>(self, if_true: XY<T>, if_false: XY<T>) -> XY<T> {
        self.select(if_true).unwrap_or(if_false)
    }

    /// Returns a term-by-term AND operation.
    pub fn and(self, other: Self) -> Self {
        self.zip_map(other, |s, o| s && o)
    }

    /// Returns a term-by-term OR operation.
    pub fn or(self, other: Self) -> Self {
        self.zip_map(other, |s, o| s || o)
    }
}

impl<T: Copy> XY<T> {
    /// Creates a `XY` with both `x` and `y` set to `value`.
    pub fn both_from(value: T) -> Self {
        XY::new(value, value)
    }
}

impl<T> From<(T, T)> for XY<T> {
    fn from((x, y): (T, T)) -> Self {
        XY::new(x, y)
    }
}

impl<T, U> From<(XY<T>, XY<U>)> for XY<(T, U)> {
    fn from((t, u): (XY<T>, XY<U>)) -> Self {
        t.zip(u)
    }
}