1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
use Printer;
use With;
use XY;
use direction;
use event::{Event, EventResult, Key};
use std::any::Any;
use std::cmp::min;
use std::ops::Deref;
use vec::Vec2;
use view::{AnyView, Selector, SizeCache, View};

/// Arranges its children linearly according to its orientation.
pub struct LinearLayout {
    children: Vec<Child>,
    orientation: direction::Orientation,
    focus: usize,

    cache: Option<XY<SizeCache>>,
}

struct Child {
    view: Box<AnyView>,
    // The last result from the child's required_size
    // Doesn't have to be what the child actually gets.
    size: Vec2,
    weight: usize,
}

impl Child {
    // Compute and caches the required size.
    fn required_size(&mut self, req: Vec2) -> Vec2 {
        self.size = self.view.required_size(req);
        self.size
    }

    fn as_view(&self) -> &AnyView {
        &*self.view
    }
}

struct ChildIterator<I> {
    // Actual iterator on the children
    inner: I,
    // Current offset
    offset: usize,
    // Available size
    available: usize,
    // Orientation for this layout
    orientation: direction::Orientation,
}

struct ChildItem<T> {
    child: T,
    offset: usize,
    length: usize,
}

impl<T> ChildIterator<T> {
    fn new(
        inner: T, orientation: direction::Orientation, available: usize
    ) -> Self {
        ChildIterator {
            inner,
            available,
            orientation,
            offset: 0,
        }
    }
}

impl<'a, T: Deref<Target = Child>, I: Iterator<Item = T>> Iterator
    for ChildIterator<I>
{
    type Item = ChildItem<T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next().map(|child| {
            // Save the current offset.
            let offset = self.offset;

            // eprintln!("Available: {}", self.available);

            let length =
                min(self.available, *child.size.get(self.orientation));

            // Allocated width
            self.available = self.available.saturating_sub(length);

            self.offset += length;

            ChildItem {
                offset,
                length,
                child,
            }
        })
    }
}

fn cap<'a, I: Iterator<Item = &'a mut usize>>(iter: I, max: usize) {
    let mut available = max;
    for item in iter {
        if *item > available {
            *item = available;
        }

        available -= *item;
    }
}

impl LinearLayout {
    /// Creates a new layout with the given orientation.
    pub fn new(orientation: direction::Orientation) -> Self {
        LinearLayout {
            children: Vec::new(),
            orientation: orientation,
            focus: 0,
            cache: None,
        }
    }

    /// Modifies the weight of the last child added.
    ///
    /// It is an error to call this before adding a child (and it will panic).
    pub fn weight(mut self, weight: usize) -> Self {
        self.children.last_mut().unwrap().weight = weight;

        self
    }

    /// Adds a child to the layout.
    ///
    /// Chainable variant.
    pub fn child<V: View + 'static>(self, view: V) -> Self {
        self.with(|s| s.add_child(view))
    }

    /// Adds a child to the layout.
    pub fn add_child<V: View + 'static>(&mut self, view: V) {
        self.children.push(Child {
            view: Box::new(view),
            size: Vec2::zero(),
            weight: 0,
        });
        self.invalidate();
    }

    /// Returns index of focused inner view
    pub fn get_focus_index(&self) -> usize {
        self.focus
    }

    // Invalidate the view, to request a layout next time
    fn invalidate(&mut self) {
        self.cache = None;
    }

    /// Creates a new vertical layout.
    pub fn vertical() -> Self {
        LinearLayout::new(direction::Orientation::Vertical)
    }

    /// Creates a new horizontal layout.
    pub fn horizontal() -> Self {
        LinearLayout::new(direction::Orientation::Horizontal)
    }

    /// Returns a reference to a child.
    pub fn get_child(&self, i: usize) -> Option<&AnyView> {
        self.children.get(i).map(|child| &*child.view)
    }

    /// Returns a mutable reference to a child.
    pub fn get_child_mut(&mut self, i: usize) -> Option<&mut AnyView> {
        self.children.get_mut(i).map(|child| &mut *child.view)
    }

    // If the cache can be used, return the cached size.
    // Otherwise, return None.
    fn get_cache(&self, req: Vec2) -> Option<Vec2> {
        match self.cache {
            None => None,
            Some(ref cache) => {
                // Is our cache even valid?
                // Also, is any child invalidating the layout?
                if cache.zip_map(req, SizeCache::accept).both()
                    && self.children_are_sleeping()
                {
                    Some(cache.map(|s| s.value))
                } else {
                    None
                }
            }
        }
    }

    fn children_are_sleeping(&self) -> bool {
        !self.children
            .iter()
            .map(Child::as_view)
            .any(View::needs_relayout)
    }

    /// Returns a cyclic mutable iterator starting with the child in focus
    fn iter_mut<'a>(
        &'a mut self, from_focus: bool, source: direction::Relative
    ) -> Box<Iterator<Item = (usize, &mut Child)> + 'a> {
        match source {
            direction::Relative::Front => {
                let start = if from_focus {
                    self.focus
                } else {
                    0
                };

                Box::new(self.children.iter_mut().enumerate().skip(start))
            }
            direction::Relative::Back => {
                let end = if from_focus {
                    self.focus + 1
                } else {
                    self.children.len()
                };
                Box::new(self.children[..end].iter_mut().enumerate().rev())
            }
        }
    }

    fn move_focus(&mut self, source: direction::Direction) -> EventResult {
        let i = if let Some(i) =
            source.relative(self.orientation).and_then(|rel| {
                // The iterator starts at the focused element.
                // We don't want that one.
                self.iter_mut(true, rel)
                    .skip(1)
                    .filter_map(|p| try_focus(p, source))
                    .next()
            }) {
            i
        } else {
            return EventResult::Ignored;
        };
        self.focus = i;
        EventResult::Consumed(None)
    }

    // If the event is a mouse event,
    // move the focus to the selected view if needed.
    fn check_focus_grab(&mut self, event: &Event) {
        if let Event::Mouse {
            offset,
            position,
            event,
        } = *event
        {
            if !event.grabs_focus() {
                return;
            }

            let position = match position.checked_sub(offset) {
                None => return,
                Some(pos) => pos,
            };

            // Find the selected child
            // Let's only care about the coordinate for our orientation.
            let position = *position.get(self.orientation);

            // Iterate on the views and find the one
            // We need a mutable ref to call take_focus later on.
            for (i, item) in ChildIterator::new(
                self.children.iter_mut(),
                self.orientation,
                // TODO: get actual width (not super important)
                usize::max_value(),
            ).enumerate()
            {
                // Get the child size:
                // this will give us the allowed window for a click.
                let child_size = item.child.size.get(self.orientation);

                if (item.offset + child_size > position)
                    && item.child.view.take_focus(direction::Direction::none())
                {
                    // eprintln!("It's a match!");
                    self.focus = i;
                    return;
                }
            }
        }
    }
}

fn try_focus(
    (i, child): (usize, &mut Child), source: direction::Direction
) -> Option<usize> {
    if child.view.take_focus(source) {
        Some(i)
    } else {
        None
    }
}

impl View for LinearLayout {
    fn draw(&self, printer: &Printer) {
        // Use pre-computed sizes
        // eprintln!("Pre loop!");
        for (i, item) in ChildIterator::new(
            self.children.iter(),
            self.orientation,
            *printer.size.get(self.orientation),
        ).enumerate()
        {
            // eprintln!("Printer size: {:?}", printer.size);
            // eprintln!("Child size: {:?}", item.child.size);
            // eprintln!("Offset: {:?}", item.offset);
            let printer = &printer.sub_printer(
                self.orientation.make_vec(item.offset, 0),
                item.child.size,
                i == self.focus,
            );
            item.child.view.draw(printer);
        }
    }

    fn needs_relayout(&self) -> bool {
        if self.cache.is_none() {
            return true;
        }

        !self.children_are_sleeping()
    }

    fn layout(&mut self, size: Vec2) {
        // If we can get away without breaking a sweat, you can bet we will.
        // eprintln!("Laying out with {:?}", size);
        if self.get_cache(size).is_none() {
            self.required_size(size);
        }

        // We'll use this guy a few times, but it's a mouthful...
        let o = self.orientation;

        for item in
            ChildIterator::new(self.children.iter_mut(), o, *size.get(o))
        {
            // Every item has the same size orthogonal to the layout
            item.child.size.set_axis_from(o.swap(), &size);

            item.child.view.layout(size.with_axis(o, item.length));
        }
    }

    fn required_size(&mut self, req: Vec2) -> Vec2 {
        // Did anything change since last time?
        if let Some(size) = self.get_cache(req) {
            return size;
        }

        // First, make a naive scenario: everything will work fine.
        let ideal_sizes: Vec<Vec2> = self.children
            .iter_mut()
            .map(|c| c.required_size(req))
            .collect();
        debug!("Ideal sizes: {:?}", ideal_sizes);
        let ideal = self.orientation.stack(ideal_sizes.iter());
        debug!("Ideal result: {:?}", ideal);

        // Does it fit?
        if ideal.fits_in(req) {
            // Champagne!
            self.cache = Some(SizeCache::build(ideal, req));
            return ideal;
        }

        // Ok, so maybe it didn't. Budget cuts, everyone.
        // Let's pretend we have almost no space in this direction.
        // budget_req is the dummy requirements, in an extreme budget
        // situation.
        let budget_req = req.with_axis(self.orientation, 1);
        debug!("Budget req: {:?}", budget_req);

        // See how they like it that way.
        // This is, hopefully, the absolute minimum these views will accept.
        let min_sizes: Vec<Vec2> = self.children
            .iter_mut()
            .map(|c| c.required_size(budget_req))
            .collect();
        let desperate = self.orientation.stack(min_sizes.iter());
        debug!("Min sizes: {:?}", min_sizes);
        debug!("Desperate: {:?}", desperate);

        // This is the lowest we'll ever go. It better fit at least.
        let orientation = self.orientation;
        if !desperate.fits_in(req) {
            // Just give up...
            // TODO: hard-cut
            cap(
                self.children
                    .iter_mut()
                    .map(|c| c.size.get_mut(orientation)),
                *req.get(self.orientation),
            );

            // TODO: print some error message or something
            debug!("Seriously? {:?} > {:?}???", desperate, req);
            // self.cache = Some(SizeCache::build(desperate, req));
            self.cache = None;
            return desperate;
        }

        // So now that we know we _can_ make it all fit, we can redistribute
        // the extra space we have.

        // This here is how much we're generously offered
        // (We just checked that req >= desperate, so the subtraction is safe
        let mut available = self.orientation.get(&(req - desperate));
        debug!("Available: {:?}", available);

        // Here, we have to make a compromise between the ideal
        // and the desperate solutions.
        // This is the vector of (ideal - minimum) sizes for each view.
        // (which is how much they would like to grow)
        let mut overweight: Vec<(usize, usize)> = ideal_sizes
            .iter()
            .map(|v| self.orientation.get(v))
            .zip(min_sizes.iter().map(|v| self.orientation.get(v)))
            .map(|(a, b)| a.saturating_sub(b))
            .enumerate()
            .collect();
        debug!("Overweight: {:?}", overweight);

        // So... distribute `available` to reduce the overweight...
        // TODO: use child weight in the distribution...

        // We'll give everyone his share of what we have left,
        // starting with those who ask the least.
        overweight.sort_by_key(|&(_, weight)| weight);
        let mut allocations = vec![0; overweight.len()];

        for (i, &(j, weight)) in overweight.iter().enumerate() {
            // This is the number of people we still have to feed.
            let remaining = overweight.len() - i;
            // How much we can spare on each one
            let budget = available / remaining;
            // Maybe he doesn't even need that much?
            let spent = min(budget, weight);
            allocations[j] = spent;
            available -= spent;
        }
        debug!("Allocations: {:?}", allocations);

        // Final lengths are the minimum ones + generous allocations
        let final_lengths: Vec<Vec2> = min_sizes
            .iter()
            .map(|v| self.orientation.get(v))
            .zip(allocations.iter())
            .map(|(a, b)| a + b)
            .map(|l| req.with_axis(self.orientation, l))
            .collect();
        debug!("Final sizes: {:?}", final_lengths);

        // Let's ask everyone one last time. Everyone should be happy.
        // (But they may ask more on the other axis.)
        let final_sizes: Vec<Vec2> = self.children
            .iter_mut()
            .enumerate()
            .map(|(i, c)| c.required_size(final_lengths[i]))
            .collect();
        debug!("Final sizes2: {:?}", final_sizes);

        // Let's stack everything to see what it looks like.
        let compromise = self.orientation.stack(final_sizes.iter());

        // Phew, that was a lot of work! I'm not doing it again.
        self.cache = Some(SizeCache::build(compromise, req));

        compromise
    }

    fn take_focus(&mut self, source: direction::Direction) -> bool {
        // In what order will we iterate on the children?
        let rel = source.relative(self.orientation);
        // We activate from_focus only if coming from the "sides".
        let i = if let Some(i) = self.iter_mut(
            rel.is_none(),
            rel.unwrap_or(direction::Relative::Front),
        ).filter_map(|p| try_focus(p, source))
            .next()
        {
            // ... we can't update `self.focus` here,
            // because rustc thinks we still borrow `self`.
            // :(
            i
        } else {
            return false;
        };

        self.focus = i;
        true
    }

    fn on_event(&mut self, event: Event) -> EventResult {
        self.check_focus_grab(&event);

        let result = {
            let mut iterator = ChildIterator::new(
                self.children.iter_mut(),
                self.orientation,
                usize::max_value(),
            );
            let item = iterator.nth(self.focus).unwrap();
            let offset = self.orientation.make_vec(item.offset, 0);
            item.child.view.on_event(event.relativized(offset))
        };
        match result {
            EventResult::Ignored => match event {
                Event::Shift(Key::Tab) if self.focus > 0 => {
                    self.move_focus(direction::Direction::back())
                }
                Event::Key(Key::Tab)
                    if self.focus + 1 < self.children.len() =>
                {
                    self.move_focus(direction::Direction::front())
                }
                Event::Key(Key::Left)
                    if self.orientation == direction::Orientation::Horizontal
                        && self.focus > 0 =>
                {
                    self.move_focus(direction::Direction::right())
                }
                Event::Key(Key::Up)
                    if self.orientation == direction::Orientation::Vertical
                        && self.focus > 0 =>
                {
                    self.move_focus(direction::Direction::down())
                }
                Event::Key(Key::Right)
                    if self.orientation == direction::Orientation::Horizontal
                        && self.focus + 1 < self.children.len() =>
                {
                    self.move_focus(direction::Direction::left())
                }
                Event::Key(Key::Down)
                    if self.orientation == direction::Orientation::Vertical
                        && self.focus + 1 < self.children.len() =>
                {
                    self.move_focus(direction::Direction::up())
                }
                _ => EventResult::Ignored,
            },
            res => res,
        }
    }

    fn call_on_any<'a>(
        &mut self, selector: &Selector,
        mut callback: Box<FnMut(&mut Any) + 'a>,
    ) {
        for child in &mut self.children {
            child
                .view
                .call_on_any(selector, Box::new(|any| callback(any)));
        }
    }

    fn focus_view(&mut self, selector: &Selector) -> Result<(), ()> {
        for (i, child) in self.children.iter_mut().enumerate() {
            if child.view.focus_view(selector).is_ok() {
                self.focus = i;
                return Ok(());
            }
        }

        Err(())
    }
}