1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
use std::sync::Arc;

use crate::math::{Bounds3, Hit, Point2, Point3, Ray, Vec3, Vec4};
use crate::shapes::triangle_mesh::TriangleMesh;
use crate::shapes::Shape;

/// A single triangle from a [`TriangleMesh`].
#[derive(Clone)]
pub struct Triangle {
    /// The triangle's corresponding [`TriangleMesh`].
    pub triangle_mesh: Arc<TriangleMesh>,
    /// The triangle's index in the [`TriangleMesh`].
    pub index: usize,
}

impl Triangle {
    /// Create a new [`Triangle`].
    pub fn new(triangle_mesh: Arc<TriangleMesh>, index: usize) -> Self {
        Triangle {
            triangle_mesh,
            index,
        }
    }

    /// Return the triangle's vertices.
    pub fn vertices(&self) -> [Point3; 3] {
        let mesh_index = self.index * 3;
        let indices = &self.triangle_mesh.indices[mesh_index..mesh_index + 3];

        [
            self.triangle_mesh.vertices[indices[0] as usize],
            self.triangle_mesh.vertices[indices[1] as usize],
            self.triangle_mesh.vertices[indices[2] as usize],
        ]
    }

    /// Return the triangle's normals.
    ///
    /// If the [`TriangleMesh`] doesn't provide any normals,
    /// they are automatically calculated assuming flat shading.
    pub fn normals(&self) -> [Vec3; 3] {
        let mesh_index = self.index * 3;
        let indices = &self.triangle_mesh.indices[mesh_index..mesh_index + 3];

        if self.triangle_mesh.normals.is_empty() {
            let normal = self.face_normal();

            [normal; 3]
        } else {
            [
                self.triangle_mesh.normals[indices[0] as usize],
                self.triangle_mesh.normals[indices[1] as usize],
                self.triangle_mesh.normals[indices[2] as usize],
            ]
        }
    }

    /// Return the triangle's tangents.
    ///
    /// Returns [`None`] if the [`TriangleMesh`] doesn't provide any tangents.
    pub fn tangents(&self) -> Option<[Vec4; 3]> {
        let mesh_index = self.index * 3;
        let indices = &self.triangle_mesh.indices[mesh_index..mesh_index + 3];

        if self.triangle_mesh.tangents.is_empty() {
            None
        } else {
            Some([
                self.triangle_mesh.tangents[indices[0] as usize],
                self.triangle_mesh.tangents[indices[1] as usize],
                self.triangle_mesh.tangents[indices[2] as usize],
            ])
        }
    }

    /// Return the triangle's UV coordinates.
    ///
    /// Returns [`None`] if the [`TriangleMesh`] doesn't provide UV coordinates.
    pub fn uvs(&self) -> Option<[Point2; 3]> {
        let mesh_index = self.index * 3;
        let indices = &self.triangle_mesh.indices[mesh_index..mesh_index + 3];

        if self.triangle_mesh.uvs.is_empty() {
            None
        } else {
            Some([
                self.triangle_mesh.uvs[indices[0] as usize],
                self.triangle_mesh.uvs[indices[1] as usize],
                self.triangle_mesh.uvs[indices[2] as usize],
            ])
        }
    }

    /// Calculate the normal of the triangle's face (flat normal).
    pub fn face_normal(&self) -> Vec3 {
        let vertices = self.vertices();

        let edge1 = vertices[1] - vertices[0];
        let edge2 = vertices[2] - vertices[0];

        Vec3::cross(edge1, edge2).normalize()
    }

    /// Calculate the triangle's circumcenter.
    pub fn circumcenter(&self) -> Point3 {
        let vertices = self.vertices();

        let u = vertices[1] - vertices[0];
        let v = vertices[2] - vertices[1];
        let w = vertices[0] - vertices[2];
        let n = Vec3::cross(u, v);

        (vertices[0] + vertices[1]) * 0.5
            - Vec3::dot(v, w) * Vec3::cross(n, u) / n.magnitude_squared() * 0.5
    }

    /// Calculate the triangle's vertex mean.
    pub fn vertex_mean(&self) -> Point3 {
        let vertices = self.vertices();

        (vertices[0] + vertices[1] + vertices[2]) / 3.0
    }
}

impl Shape for Triangle {
    fn intersects(&self, ray: Ray) -> Option<Hit> {
        let vertices = self.vertices();
        let normals = self.normals();
        let tangents = self.tangents();
        let uvs = self.uvs();

        let (edge1, edge2) = (vertices[1] - vertices[0], vertices[2] - vertices[0]);

        let p_vec = Vec3::cross(ray.direction, edge2);
        let determinant = Vec3::dot(edge1, p_vec);

        if determinant.abs() < 1e-9 {
            return None;
        }

        let inverse_determinant = 1.0 / determinant;

        let t_vec = ray.origin - vertices[0];
        let u = inverse_determinant * Vec3::dot(t_vec, p_vec);

        if !(0.0..=1.0).contains(&u) {
            return None;
        }

        let q_vec = Vec3::cross(t_vec, edge1);
        let v = inverse_determinant * Vec3::dot(ray.direction, q_vec);

        if v < 0.0 || u + v > 1.0 {
            return None;
        }

        let intersection_distance = inverse_determinant * Vec3::dot(edge2, q_vec);

        if intersection_distance < 0.0 {
            return None;
        }

        let intersection_point = ray.get(intersection_distance);

        let w = 1.0 - u - v;
        // Note that the Möller–Trumbore algorithm (https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf)
        // describes a point T(u,v) by
        // T(u, v) = (1 - u - v) V0 + u V1 + v V2
        // Because u + v + w = 1 and therefore w = 1 - u - v we interpolate by
        // N(u, v, w) = w N0 + u N1 + v N2
        let mut normal = (w * normals[0] + u * normals[1] + v * normals[2]).normalize();
        let mut tangent = tangents.map(|t| (w * t[0] + u * t[1] + v * t[2]).normalize());

        let uv = uvs
            .map(|uvs| {
                // Same explanation for interpolation as above
                w * uvs[0] + u * uvs[1] + v * uvs[2]
            })
            // TODO: Generate in glTF loader when missing?
            // TODO: use standard triangle UVs
            .unwrap_or_default();

        if Vec3::dot(ray.direction, normal) > 0.0 {
            normal = -normal;
            tangent = tangent.map(|t| -t);
        }

        Some(Hit::new(
            intersection_point,
            normal,
            tangent,
            intersection_distance,
            uv,
        ))
    }

    fn bounds(&self) -> Bounds3 {
        let vertices = self.vertices();

        Bounds3::new(vertices[0], vertices[1]).include_point(vertices[2])
    }
}

#[cfg(test)]
mod tests {
    use std::f64::consts::{PI, TAU};

    use assert_approx_eq::assert_approx_eq;

    use crate::math::{Point3, Transformable, Vec3};
    use crate::util::EPSILON_F64;

    use super::TriangleMesh;

    #[test]
    fn rotate_triangle() {
        let indices = vec![0, 1, 2];
        let vertices = vec![
            Point3::new(-1.0, -0.5, -1.0),
            Point3::new(0.0, 1.0, -1.0),
            Point3::new(1.0, -0.5, 2.0),
        ];
        let normals = vec![Vec3::cross(vertices[1] - vertices[0], vertices[2] - vertices[0]); 3];
        let tangents = vec![];
        let uvs = vec![];

        let triangle_mesh = TriangleMesh::new(indices, vertices.clone(), normals, tangents, uvs);

        let rotated_x_triangle = triangle_mesh.clone().rotate_x(TAU);
        let rotated_y_triangle = triangle_mesh.clone().rotate_y(TAU);
        let rotated_z_triangle = triangle_mesh.clone().rotate_z(TAU);

        let rotated_triangle = triangle_mesh.clone().rotate_x(PI).rotate_y(PI).rotate_z(PI);

        assert_approx_eq!(vertices[0], rotated_x_triangle.vertices[0], EPSILON_F64);
        assert_approx_eq!(vertices[1], rotated_x_triangle.vertices[1], EPSILON_F64);
        assert_approx_eq!(vertices[2], rotated_x_triangle.vertices[2], EPSILON_F64);
        assert_approx_eq!(vertices[0], rotated_y_triangle.vertices[0], EPSILON_F64);
        assert_approx_eq!(vertices[1], rotated_y_triangle.vertices[1], EPSILON_F64);
        assert_approx_eq!(vertices[2], rotated_y_triangle.vertices[2], EPSILON_F64);
        assert_approx_eq!(vertices[0], rotated_z_triangle.vertices[0], EPSILON_F64);
        assert_approx_eq!(vertices[1], rotated_z_triangle.vertices[1], EPSILON_F64);
        assert_approx_eq!(vertices[2], rotated_z_triangle.vertices[2], EPSILON_F64);
        assert_approx_eq!(vertices[0], rotated_triangle.vertices[0], EPSILON_F64);
        assert_approx_eq!(vertices[1], rotated_triangle.vertices[1], EPSILON_F64);
        assert_approx_eq!(vertices[2], rotated_triangle.vertices[2], EPSILON_F64);
    }
}