1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
//! Pure Rust implementation of the [`crypto_box`] public-key authenticated
//! encryption scheme from [NaCl]-family libraries (e.g. libsodium, TweetNaCl)
//! which combines the [X25519] Diffie-Hellman function and the
//! [XSalsa20Poly1305] authenticated encryption cipher into an Elliptic Curve
//! Integrated Encryption Scheme ([ECIES]).
//!
//! # Introduction
//!
//! Imagine Alice wants something valuable shipped to her. Because it's
//! valuable, she wants to make sure it arrives securely (i.e. hasn't been
//! opened or tampered with) and that it's not a forgery (i.e. it's actually
//! from the sender she's expecting it to be from and nobody's pulling the old
//! switcheroo).
//!
//! One way she can do this is by providing the sender (let's call him Bob)
//! with a high-security box of her choosing. She provides Bob with this box,
//! and something else: a padlock, but a padlock without a key. Alice is
//! keeping that key all to herself. Bob can put items in the box then put the
//! padlock onto it, but once the padlock snaps shut, the box cannot be opened
//! by anyone who doesn't have Alice's private key.
//!
//! Here's the twist though, Bob also puts a padlock onto the box. This padlock
//! uses a key Bob has published to the world, such that if you have one of
//! Bob's keys, you know a box came from him because Bob's keys will open Bob's
//! padlocks (let's imagine a world where padlocks cannot be forged even if you
//! know the key). Bob then sends the box to Alice.
//!
//! In order for Alice to open the box, she needs two keys: her private key
//! that opens her own padlock, and Bob's well-known key. If Bob's key doesn't
//! open the second padlock then Alice knows that this is not the box she was
//! expecting from Bob, it's a forgery.
//!
//! # Usage
//!
//! ```rust
//! use crypto_box::{Box, PublicKey, SecretKey, aead::Aead};
//!
//! //
//! // Encryption
//! //
//!
//! // Generate a random secret key.
//! // NOTE: It can be serialized as bytes by calling `secret_key.to_bytes()`
//! let mut rng = rand::thread_rng();
//! let alice_secret_key = SecretKey::generate(&mut rng);
//!
//! // Get the public key for the secret key we just generated
//! let alice_public_key_bytes = alice_secret_key.public_key().as_bytes().clone();
//!
//! // Obtain your recipient's public key.
//! let bob_public_key = PublicKey::from([
//!    0xe8, 0x98, 0xc, 0x86, 0xe0, 0x32, 0xf1, 0xeb,
//!    0x29, 0x75, 0x5, 0x2e, 0x8d, 0x65, 0xbd, 0xdd,
//!    0x15, 0xc3, 0xb5, 0x96, 0x41, 0x17, 0x4e, 0xc9,
//!    0x67, 0x8a, 0x53, 0x78, 0x9d, 0x92, 0xc7, 0x54,
//! ]);
//!
//! // Create a `Box` by performing Diffie-Hellman key agreement between
//! // the two keys.
//! let alice_box = Box::new(&bob_public_key, &alice_secret_key);
//!
//! // Get a random nonce to encrypt the message under
//! let nonce = crypto_box::generate_nonce(&mut rng);
//!
//! // Message to encrypt
//! let plaintext = b"Top secret message we're encrypting";
//!
//! // Encrypt the message using the box
//! let ciphertext = alice_box.encrypt(&nonce, &plaintext[..]).unwrap();
//!
//! //
//! // Decryption
//! //
//!
//! // Either side can encrypt or decrypt messages under the Diffie-Hellman key
//! // they agree upon. The example below shows Bob's side.
//! let bob_secret_key = SecretKey::from([
//!     0xb5, 0x81, 0xfb, 0x5a, 0xe1, 0x82, 0xa1, 0x6f,
//!     0x60, 0x3f, 0x39, 0x27, 0xd, 0x4e, 0x3b, 0x95,
//!     0xbc, 0x0, 0x83, 0x10, 0xb7, 0x27, 0xa1, 0x1d,
//!     0xd4, 0xe7, 0x84, 0xa0, 0x4, 0x4d, 0x46, 0x1b
//! ]);
//!
//! // Deserialize Alice's public key from bytes
//! let alice_public_key = PublicKey::from(alice_public_key_bytes);
//!
//! // Bob can compute the same Box as Alice by performing the reciprocal
//! // key exchange operation.
//! let bob_box = Box::new(&alice_public_key, &bob_secret_key);
//!
//! // Decrypt the message, using the same randomly generated nonce
//! let decrypted_plaintext = bob_box.decrypt(&nonce, &ciphertext[..]).unwrap();
//!
//! assert_eq!(&plaintext[..], &decrypted_plaintext[..]);
//! ```
//!
//! ## In-place Usage (eliminates `alloc` requirement)
//!
//! This crate has an optional `alloc` feature which can be disabled in e.g.
//! microcontroller environments that don't have a heap.
//!
//! The [`Aead::encrypt_in_place`] and [`Aead::decrypt_in_place`]
//! methods accept any type that impls the [`aead::Buffer`] trait which
//! contains the plaintext for encryption or ciphertext for decryption.
//!
//! Note that if you enable the `heapless` feature of this crate,
//! you will receive an impl of `aead::Buffer` for [`heapless::Vec`]
//! (re-exported from the `aead` crate as `aead::heapless::Vec`),
//! which can then be passed as the `buffer` parameter to the in-place encrypt
//! and decrypt methods.
//!
//! A `heapless` usage example can be found in the documentation for the
//! `xsalsa20poly1305` crate:
//!
//! <https://docs.rs/xsalsa20poly1305/latest/xsalsa20poly1305/#in-place-usage-eliminates-alloc-requirement>
//!
//! [NaCl]: https://nacl.cr.yp.to/
//! [`crypto_box`]: https://nacl.cr.yp.to/box.html
//! [X25519]: https://cr.yp.to/ecdh.html
//! [XSalsa20Poly1305]: https://nacl.cr.yp.to/secretbox.html
//! [ECIES]: https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
//! [`heapless::Vec`]: https://docs.rs/heapless/latest/heapless/struct.Vec.html

#![no_std]
#![doc(html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo_small.png")]
#![warn(missing_docs, rust_2018_idioms)]

pub use x25519_dalek::PublicKey;
pub use xsalsa20poly1305::aead;

use aead::generic_array::{
    typenum::{U0, U16, U24},
    GenericArray,
};
use aead::{Aead, Buffer, Error, NewAead};
use core::fmt::{self, Debug};
use rand_core::{CryptoRng, RngCore};
use salsa20::hsalsa20;
use xsalsa20poly1305::{Tag, XSalsa20Poly1305};

/// Size of a `crypto_box` public or secret key in bytes.
pub const KEY_SIZE: usize = 32;

/// Generate a random nonce: every message MUST have a unique nonce!
///
/// Do *NOT* ever reuse the same nonce for two messages!
pub fn generate_nonce<T>(csprng: &mut T) -> GenericArray<u8, U24>
where
    T: RngCore + CryptoRng,
{
    let mut nonce = GenericArray::default();
    csprng.fill_bytes(&mut nonce);
    nonce
}

/// `crypto_box` secret key
#[derive(Clone)]
pub struct SecretKey(x25519_dalek::StaticSecret);

impl SecretKey {
    /// Generate a random [`SecretKey`].
    pub fn generate<T>(csprng: &mut T) -> Self
    where
        T: RngCore + CryptoRng,
    {
        SecretKey(x25519_dalek::StaticSecret::new(csprng))
    }

    /// Get the [`PublicKey`] which corresponds to this [`SecretKey`]
    pub fn public_key(&self) -> PublicKey {
        self.into()
    }

    /// Get the serialized bytes for this [`SecretKey`]
    pub fn to_bytes(&self) -> [u8; KEY_SIZE] {
        self.0.to_bytes()
    }
}

impl From<[u8; KEY_SIZE]> for SecretKey {
    fn from(bytes: [u8; KEY_SIZE]) -> SecretKey {
        SecretKey(bytes.into())
    }
}

impl Debug for SecretKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("SecretKey(...)")
    }
}

impl From<&SecretKey> for PublicKey {
    fn from(secret_key: &SecretKey) -> PublicKey {
        PublicKey::from(&secret_key.0)
    }
}

/// Alias for [`SalsaBox`].
pub type Box = SalsaBox;

/// Public-key encryption scheme based on the [X25519] Elliptic Curve
/// Diffie-Hellman function and the [XSalsa20Poly1305] authenticated encryption
/// cipher.
///
/// This type impls the [`aead::Aead`] trait, and otherwise functions as a
/// symmetric Authenticated Encryption with Associated Data (AEAD) cipher
/// once instantiated.
///
/// [X25519]: https://cr.yp.to/ecdh.html
/// [XSalsa20Poly1305]: https://github.com/RustCrypto/AEADs/tree/master/xsalsa20poly1305
pub struct SalsaBox(XSalsa20Poly1305);

impl SalsaBox {
    /// Create a new [`SalsaBox`], performing X25519 Diffie-Hellman to derive
    /// a shared secret from the provided public and secret keys.
    pub fn new(public_key: &PublicKey, secret_key: &SecretKey) -> Self {
        let shared_secret = secret_key.0.diffie_hellman(public_key);

        // Use HSalsa20 to create a uniformly random key from the shared secret
        let key = hsalsa20(
            &GenericArray::clone_from_slice(shared_secret.as_bytes()),
            &GenericArray::default(),
        );

        SalsaBox(XSalsa20Poly1305::new(key))
    }
}

impl Aead for SalsaBox {
    type NonceSize = U24;
    type TagSize = U16;
    type CiphertextOverhead = U0;

    fn encrypt_in_place(
        &self,
        nonce: &GenericArray<u8, Self::NonceSize>,
        associated_data: &[u8],
        buffer: &mut impl Buffer,
    ) -> Result<(), Error> {
        self.0.encrypt_in_place(nonce, associated_data, buffer)
    }

    fn encrypt_in_place_detached(
        &self,
        nonce: &GenericArray<u8, Self::NonceSize>,
        associated_data: &[u8],
        buffer: &mut [u8],
    ) -> Result<Tag, Error> {
        self.0
            .encrypt_in_place_detached(nonce, associated_data, buffer)
    }

    fn decrypt_in_place(
        &self,
        nonce: &GenericArray<u8, Self::NonceSize>,
        associated_data: &[u8],
        buffer: &mut impl Buffer,
    ) -> Result<(), Error> {
        self.0.decrypt_in_place(nonce, associated_data, buffer)
    }

    fn decrypt_in_place_detached(
        &self,
        nonce: &GenericArray<u8, Self::NonceSize>,
        associated_data: &[u8],
        buffer: &mut [u8],
        tag: &Tag,
    ) -> Result<(), Error> {
        self.0
            .decrypt_in_place_detached(nonce, associated_data, buffer, tag)
    }
}