#[repr(align(64))]
pub struct CachePadded<T> { /* private fields */ }
Expand description

Pads and aligns a value to the length of a cache line.

In concurrent programming, sometimes it is desirable to make sure commonly accessed pieces of data are not placed into the same cache line. Updating an atomic value invalides the whole cache line it belongs to, which makes the next access to the same cache line slower for other CPU cores. Use CachePadded to ensure updating one piece of data doesn’t invalidate other cached data.

Cache lines are assumed to be 64 bytes on all architectures.

Size and alignment

The size of CachePadded<T> is the smallest multiple of 64 bytes large enough to accommodate a value of type T.

The alignment of CachePadded<T> is the maximum of 64 bytes and the alignment of T.

Examples

Alignment and padding:

use crossbeam_utils::CachePadded;

let array = [CachePadded::new(1i32), CachePadded::new(2i32)];
let addr1 = &*array[0] as *const i32 as usize;
let addr2 = &*array[1] as *const i32 as usize;

assert_eq!(addr2 - addr1, 64);
assert_eq!(addr1 % 64, 0);
assert_eq!(addr2 % 64, 0);

When building a concurrent queue with a head and a tail index, it is wise to place them in different cache lines so that concurrent threads pushing and popping elements don’t invalidate each other’s cache lines:

use crossbeam_utils::CachePadded;
use std::sync::atomic::AtomicUsize;

struct Queue<T> {
    head: CachePadded<AtomicUsize>,
    tail: CachePadded<AtomicUsize>,
    buffer: *mut T,
}

Implementations§

Pads and aligns a value to the length of a cache line.

Examples
use crossbeam_utils::CachePadded;

let padded_value = CachePadded::new(1);

Returns the value value.

Examples
use crossbeam_utils::CachePadded;

let padded_value = CachePadded::new(7);
let value = padded_value.into_inner();
assert_eq!(value, 7);

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Returns the “default value” for a type. Read more
The resulting type after dereferencing.
Dereferences the value.
Mutably dereferences the value.
Converts to this type from the input type.
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Converts to this type from the input type.

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.