1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
//! Multi-producer multi-consumer channels for message passing.
//!
//! Channels are concurrent FIFO queues used for passing messages between threads.
//!
//! Crossbeam's channels are an alternative to the [`std::sync::mpsc`] channels provided by the
//! standard library. They are an improvement in pretty much all aspects: ergonomics, flexibility,
//! features, performance.
//!
//! # Types of channels
//!
//! A channel can be constructed by calling functions [`unbounded`] and [`bounded`]. The former
//! creates a channel of unbounded capacity (i.e. it can contain an arbitrary number of messages),
//! while the latter creates a channel of bounded capacity (i.e. there is a limit to how many
//! messages it can hold at a time).
//!
//! Both constructors returns a pair of two values: a sender and a receiver. Senders and receivers
//! represent two opposite sides of a channel. Messages are sent using senders and received using
//! receivers.
//!
//! Creating an unbounded channel:
//!
//! ```
//! use crossbeam_channel::unbounded;
//!
//! // Create an unbounded channel.
//! let (tx, rx) = unbounded();
//!
//! // Can send an arbitrarily large number of messages.
//! for i in 0..1000 {
//!     tx.try_send(i).unwrap();
//! }
//! ```
//!
//! Creating a bounded channel:
//!
//! ```
//! use crossbeam_channel::bounded;
//!
//! // Create a channel that can hold at most 5 messages at a time.
//! let (tx, rx) = bounded(5);
//!
//! // Can send only 5 messages.
//! for i in 0..5 {
//!     tx.try_send(i).unwrap();
//! }
//!
//! // An attempt to send one more message will fail.
//! assert!(tx.try_send(5).is_err());
//! ```
//!
//! An interesting special case is a bounded, zero-capacity channel. This kind of channel cannot
//! hold any messages at all! In order to send a message through the channel, another thread must
//! be waiting at the other end of it at the same time:
//!
//! ```
//! use crossbeam_channel::bounded;
//!
//! use std::thread;
//!
//! // Create a zero-capacity channel.
//! let (tx, rx) = bounded(0);
//!
//! // Spawn a thread that sends a message into the channel.
//! thread::spawn(move || tx.send("Hi!").unwrap());
//!
//! // Receive the message.
//! assert_eq!(rx.recv(), Ok("Hi!"));
//! ```
//!
//! # Sharing channels
//!
//! Senders and receivers can be either shared by reference or cloned and then sent to other
//! threads. Feel free to use any of these two approaches as you like.
//!
//! Sharing by reference:
//!
//! ```
//! extern crate crossbeam_channel;
//! extern crate crossbeam_utils;
//! # fn main() {
//!
//! use crossbeam_channel::unbounded;
//!
//! let (tx, rx) = unbounded();
//!
//! crossbeam_utils::scoped::scope(|s| {
//!     // Spawn a thread that sends one message and then receives one.
//!     s.spawn(|| {
//!         tx.send(1).unwrap();
//!         rx.recv().unwrap();
//!     });
//!
//!     // Spawn another thread that does the same thing.
//!     // Both closures capture `tx` and `rx` by reference.
//!     s.spawn(|| {
//!         tx.send(2).unwrap();
//!         rx.recv().unwrap();
//!     });
//! });
//!
//! # }
//! ```
//!
//! Sharing by sending:
//!
//! ```
//! use std::thread;
//! use crossbeam_channel::unbounded;
//!
//! let (tx, rx) = unbounded();
//! let (tx2, rx2) = (tx.clone(), rx.clone());
//!
//! // Spawn a thread that sends one message and then receives one.
//! // Here, `tx` and `rx` are moved into the closure (sent into the thread).
//! thread::spawn(move || {
//!     tx.send(1).unwrap();
//!     rx.recv().unwrap();
//! });
//!
//! // Spawn another thread that does the same thing.
//! // Here, `tx2` and `rx2` are moved into the closure (sent into the thread).
//! thread::spawn(move || {
//!     tx2.send(2).unwrap();
//!     rx2.recv().unwrap();
//! });
//! ```
//!
//! # Disconnection
//!
//! As soon as all senders or all receivers associated with a channel are dropped, it becomes
//! disconnected. Messages cannot be sent into a disconnected channel anymore, but the remaining
//! messages can still be received.
//!
//! ```
//! use crossbeam_channel::{unbounded, TrySendError};
//!
//! let (tx, rx) = unbounded();
//!
//! // The only receiver is dropped, disconnecting the channel.
//! drop(rx);
//!
//! // Attempting to send a message will result in an error.
//! assert_eq!(tx.try_send("hello"), Err(TrySendError::Disconnected("hello")));
//! ```
//!
//! ```
//! use crossbeam_channel::{unbounded, TryRecvError};
//!
//! let (tx, rx) = unbounded();
//! tx.try_send(1).unwrap();
//! tx.try_send(2).unwrap();
//! tx.try_send(3).unwrap();
//!
//! // The only sender is dropped, disconnecting the channel.
//! drop(tx);
//!
//! // The remaining messages can be received.
//! assert_eq!(rx.try_recv(), Ok(1));
//! assert_eq!(rx.try_recv(), Ok(2));
//! assert_eq!(rx.try_recv(), Ok(3));
//!
//! // However, attempting to receive another message will result in an error.
//! assert_eq!(rx.try_recv(), Err(TryRecvError::Disconnected));
//! ```
//!
//! # Blocking and non-blocking operations
//!
//! Send and receive operations come in three variants:
//!
//! 1. Non-blocking: [`try_send`] and [`try_recv`].
//! 2. Blocking: [`send`] and [`recv`].
//! 3. Blocking with a timeout: [`send_timeout`] and [`recv_timeout`].
//!
//! The non-blocking variant attempts to perform the operation, but doesn't block the current
//! thread on failure (e.g. if receiving a message from an empty channel).
//!
//! The blocking variant will wait until the operation can be performed or the channel becomes
//! disconnected.
//!
//! Blocking with a timeout does the same thing, but blocks the current thread only for a limited
//! amount time.
//!
//! # Iteration
//!
//! Receivers can be turned into iterators. For example, calling [`iter`] creates an iterator that
//! returns messages until the channel is disconnected. Note that iteration may block while waiting
//! for the next message.
//!
//! ```
//! use crossbeam_channel::unbounded;
//!
//! let (tx, rx) = unbounded();
//! tx.send(1).unwrap();
//! tx.send(2).unwrap();
//! tx.send(3).unwrap();
//!
//! // Drop the sender in order to disconnect the channel.
//! drop(tx);
//!
//! // Receive all remaining messages.
//! let v: Vec<_> = rx.iter().collect();
//! assert_eq!(v, [1, 2, 3]);
//! ```
//!
//! By calling [`try_iter`] it is also possible to create an iterator that returns messages until
//! the channel is empty. This iterator will never block the current thread.
//!
//! ```
//! use crossbeam_channel::unbounded;
//!
//! let (tx, rx) = unbounded();
//! tx.send(1).unwrap();
//! tx.send(2).unwrap();
//! tx.send(3).unwrap();
//! // No need to drop the sender.
//!
//! // Receive all messages currently in the channel.
//! let v: Vec<_> = rx.try_iter().collect();
//! assert_eq!(v, [1, 2, 3]);
//! ```
//!
//! Finally, there is the [`into_iter`] method, which is equivalent to [`iter`], except it takes
//! ownership of the receiver instead of borrowing it.
//!
//! # Selection
//!
//! Selection allows you to declare a set of operations on channels and perform exactly one of
//! them, whichever becomes ready first, possibly blocking until that happens.
//!
//! For example, selection can be used to receive a message from one of the two channels, blocking
//! until a message appears on either of them:
//!
//! ```
//! # #[macro_use]
//! # extern crate crossbeam_channel;
//! # fn main() {
//!
//! use std::thread;
//! use crossbeam_channel::unbounded;
//!
//! let (tx1, rx1) = unbounded();
//! let (tx2, rx2) = unbounded();
//!
//! thread::spawn(move || tx1.send("foo").unwrap());
//! thread::spawn(move || tx2.send("bar").unwrap());
//!
//! select_loop! {
//!     recv(rx1, msg) => {
//!         println!("Received a message from the first channel: {}", msg);
//!     }
//!     recv(rx2, msg) => {
//!         println!("Received a message from the second channel: {}", msg);
//!     }
//! }
//!
//! # }
//! ```
//!
//! The syntax of [`select_loop!`] is very similar to the one used by `match`.
//!
//! Here is another, more complicated example of selection. Here we are selecting over two
//! operations on the opposite ends of the same channel: a send and a receive operation.
//!
//! ```
//! # #[macro_use]
//! # extern crate crossbeam_channel;
//! # fn main() {
//!
//! use crossbeam_channel::{bounded, Sender, Receiver, Select};
//! use std::thread;
//!
//! // Either send my name into the channel or receive someone else's, whatever happens first.
//! fn seek<'a>(name: &'a str, tx: Sender<&'a str>, rx: Receiver<&'a str>) {
//!     select_loop! {
//!         recv(rx, peer) => println!("{} received a message from {}.", name, peer),
//!         send(tx, name) => {},
//!     }
//! }
//!
//! let (tx, rx) = bounded(1); // Make room for one unmatched send.
//!
//! // Pair up five people by exchanging messages over the channel.
//! // Since there is an odd number of them, one person won't have its match.
//! ["Anna", "Bob", "Cody", "Dave", "Eva"].iter()
//!     .map(|name| {
//!         let tx = tx.clone();
//!         let rx = rx.clone();
//!         thread::spawn(move || seek(name, tx, rx))
//!     })
//!     .collect::<Vec<_>>()
//!     .into_iter()
//!     .for_each(|t| t.join().unwrap());
//!
//! // Let's send a message to the remaining person who doesn't have a match.
//! if let Ok(name) = rx.try_recv() {
//!     println!("No one received {}’s message.", name);
//! }
//!
//! # }
//! ```
//!
//! For more details, take a look at the documentation of [`select_loop!`].
//!
//! If you need a more powerful interface that allows selecting over a dynamic set of channel
//! operations, use [`Select`].
//!
//! [`std::sync::mpsc`]: https://doc.rust-lang.org/std/sync/mpsc/index.html
//! [`unbounded`]: fn.unbounded.html
//! [`bounded`]: fn.bounded.html
//! [`try_send`]: struct.Sender.html#method.try_send
//! [`send`]: struct.Sender.html#method.send
//! [`send_timeout`]: struct.Sender.html#method.send_timeout
//! [`try_recv`]: struct.Receiver.html#method.try_recv
//! [`recv`]: struct.Receiver.html#method.recv
//! [`recv_timeout`]: struct.Receiver.html#method.recv_timeout
//! [`iter`]: struct.Receiver.html#method.iter
//! [`try_iter`]: struct.Receiver.html#method.try_iter
//! [`into_iter`]: struct.Receiver.html#method.into_iter
//! [`select_loop!`]: macro.select_loop.html
//! [`Select`]: struct.Select.html

#![cfg_attr(feature = "nightly", feature(spin_loop_hint))]

extern crate crossbeam_epoch;
extern crate crossbeam_utils;
extern crate parking_lot;

mod channel;
mod err;
mod exchanger;
mod flavors;
mod monitor;
mod select;
mod utils;

pub use channel::{bounded, unbounded};
pub use channel::{Receiver, Sender};
pub use channel::{IntoIter, Iter, TryIter};
pub use err::{RecvError, RecvTimeoutError, TryRecvError};
pub use err::{SendError, SendTimeoutError, TrySendError};
pub use err::{SelectRecvError, SelectSendError};
pub use select::Select;