1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
use crate::Bitmap;
use crate::Treemap;

use super::util;
use crate::treemap::{Deserializer, Serializer};
use std::collections::btree_map::Entry;
use std::collections::BTreeMap;
use std::ops::{Bound, RangeBounds};
use std::{io, u64};

impl Treemap {
    /// Creates an empty `Treemap`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use croaring::Treemap;
    /// let treemap = Treemap::new();
    /// ```
    #[must_use]
    pub fn new() -> Self {
        Treemap {
            map: BTreeMap::new(),
        }
    }

    /// Creates a `Treemap` with the contents of a `Bitmap`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use croaring::Treemap;
    /// use croaring::Bitmap;
    ///
    /// let bitmap = Bitmap::of(&[1, 2, 3]);
    /// let treemap = Treemap::from_bitmap(bitmap);
    /// assert_eq!(treemap.cardinality(), 3);
    /// ```
    #[must_use]
    pub fn from_bitmap(bitmap: Bitmap) -> Self {
        let mut map = BTreeMap::new();
        map.insert(0, bitmap);
        Treemap { map }
    }

    /// Add the integer element to the bitmap
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::u32;
    /// use croaring::Treemap;
    ///
    /// let mut treemap = Treemap::new();
    /// treemap.add(3);
    /// assert!(treemap.contains(3));
    /// treemap.add(u32::MAX as u64);
    /// assert!(treemap.contains(u32::MAX as u64));
    /// treemap.add(u64::from(u32::MAX) + 1);
    /// assert!(treemap.contains(u64::from(u32::MAX)+ 1));
    /// ```
    pub fn add(&mut self, value: u64) {
        let (hi, lo) = util::split(value);
        self.get_or_create(hi).add(lo);
    }

    /// Add the integer element to the bitmap. Returns true if the value was
    /// added, false if the value was already in the bitmap.
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::Treemap;
    ///
    /// let mut bitmap = Treemap::new();
    /// assert!(bitmap.add_checked(1));
    /// assert!(!bitmap.add_checked(1));
    /// ```
    pub fn add_checked(&mut self, value: u64) -> bool {
        let (hi, lo) = util::split(value);
        self.get_or_create(hi).add_checked(lo)
    }

    /// Add all values in range
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::Treemap;
    ///
    /// let mut treemap1 = Treemap::new();
    /// treemap1.add_range((1..3));
    ///
    /// assert!(!treemap1.is_empty());
    /// assert!(treemap1.contains(1));
    /// assert!(treemap1.contains(2));
    /// assert!(!treemap1.contains(3));
    ///
    /// let mut treemap2 = Treemap::new();
    /// treemap2.add_range((3..1));
    /// assert!(treemap2.is_empty());
    ///
    /// let mut treemap3 = Treemap::new();
    /// treemap3.add_range((3..3));
    /// assert!(treemap3.is_empty());
    ///
    /// let mut treemap4 = Treemap::new();
    /// treemap4.add_range(..=2);
    /// treemap4.add_range(u64::MAX..=u64::MAX);
    /// assert!(treemap4.contains(0));
    /// assert!(treemap4.contains(1));
    /// assert!(treemap4.contains(2));
    /// assert!(treemap4.contains(u64::MAX));
    /// assert_eq!(treemap4.cardinality(), 4);
    /// ```
    pub fn add_range<R: RangeBounds<u64>>(&mut self, range: R) {
        let (start, end) = range_to_inclusive(range);
        self.add_range_inclusive(start, end);
    }

    fn add_range_inclusive(&mut self, start: u64, end: u64) {
        if start > end {
            return;
        }
        let (start_high, start_low) = util::split(start);
        let (end_high, end_low) = util::split(end);
        if start_high == end_high {
            self.map
                .entry(start_high)
                .or_default()
                .add_range(start_low..=end_low);
            return;
        }

        // Because start and end don't land on the same inner bitmap,
        // we need to do this in multiple steps:
        // 1. Partially fill the first bitmap with values from the closed
        //    interval [start_low, uint32_max]
        // 2. Fill intermediate bitmaps completely: [0, uint32_max]
        // 3. Partially fill the last bitmap with values from the closed
        //    interval [0, end_low]

        // Step 1: Partially fill the first bitmap
        {
            let bitmap = self.get_or_create(start_high);
            bitmap.add_range(start_low..=u32::MAX);
        }
        // Step 2: Fill intermediate bitmaps completely
        for i in start_high + 1..end_high {
            // This blows away the container, is it worth trying to save any existing alocations?
            self.map.insert(i, Bitmap::from_range(0..=u32::MAX));
        }
        // Step 3: Partially fill the last bitmap
        {
            let bitmap = self.get_or_create(end_high);
            bitmap.add_range(0..=end_low);
        }
    }

    /// ```rust
    /// use croaring::Treemap;
    ///
    /// let mut treemap = Treemap::new();
    /// ```
    #[must_use]
    pub fn contains(&self, value: u64) -> bool {
        let (hi, lo) = util::split(value);
        match self.map.get(&hi) {
            None => false,
            Some(r) => r.contains(lo),
        }
    }

    /// Returns true if the Treemap is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::u64;
    /// use croaring::Treemap;
    ///
    /// let mut treemap = Treemap::new();
    ///
    /// assert!(treemap.is_empty());
    ///
    /// treemap.add(u64::MAX);
    ///
    /// assert!(!treemap.is_empty());
    /// ```
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.map.values().all(Bitmap::is_empty)
    }

    /// Returns true if the Treemap is full.
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::Treemap;
    ///
    /// let mut treemap = Treemap::new();
    /// assert!(!treemap.is_full());
    /// ```
    #[must_use]
    pub fn is_full(&self) -> bool {
        // only bother to check if map is fully saturated
        if self.map.len() != usize::try_from(u32::MAX).unwrap() + 1 {
            return false;
        }
        self.map
            .values()
            .all(|bitmap| bitmap.cardinality() == u64::from(u32::MAX) + 1)
    }

    /// Return true if all the elements of Self are in &other.
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::Treemap;
    ///
    /// let bitmap1: Treemap = (5..10).collect();
    /// let bitmap2: Treemap = (5..8).collect();
    /// let bitmap3: Treemap = (5..10).collect();
    /// let bitmap4: Treemap = (9..11).collect();
    ///
    /// assert!(bitmap2.is_subset(&bitmap1));
    /// assert!(bitmap3.is_subset(&bitmap1));
    /// assert!(!bitmap4.is_subset(&bitmap1));
    /// ```
    #[must_use]
    pub fn is_subset(&self, other: &Treemap) -> bool {
        self.map.iter().all(|(key, lhs)| {
            lhs.is_empty() || other.map.get(key).map_or(false, |rhs| lhs.is_subset(rhs))
        })
    }

    /// Returns true if this bitmap is a strict subset of `other`
    #[must_use]
    pub fn is_strict_subset(&self, other: &Treemap) -> bool {
        self.is_subset(other) && self.cardinality() != other.cardinality()
    }

    /// Negate the bits in the given range, any bit set in the range is cleared, and any bit cleared
    ///
    /// Areas outside the interval are unchanged
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::Treemap;
    ///
    /// let mut treemap = Treemap::new();
    /// treemap.add_range(1..5);
    /// treemap.flip(2..10);
    /// assert_eq!(treemap.cardinality(), 6);
    /// assert_eq!(treemap.iter().collect::<Vec<_>>(), vec![1, 5, 6, 7, 8, 9]);
    /// ```
    pub fn flip<R: RangeBounds<u64>>(&mut self, range: R) {
        let (start, end) = range_to_inclusive(range);
        self.flip_inclusive(start, end);
    }

    fn flip_inclusive(&mut self, start: u64, end: u64) {
        if start > end {
            return;
        }
        let (start_high, start_low) = util::split(start);
        let (end_high, end_low) = util::split(end);

        if start_high == end_high {
            match self.map.entry(start_high) {
                Entry::Occupied(mut entry) => {
                    entry.get_mut().flip_inplace(start_low..=end_low);
                    if entry.get().is_empty() {
                        entry.remove();
                    }
                }
                Entry::Vacant(entry) => {
                    entry.insert(Bitmap::from_range(start_low..=end_low));
                }
            }
            return;
        }

        // Because start and end don't land on the same inner bitmap,
        // we need to do this in multiple steps:
        // 1. Partially flip the first bitmap with values from the closed
        //    interval [start_low, uint32_max]
        // 2. Flip intermediate bitmaps completely: [0, uint32_max]
        // 3. Partially flip the last bitmap with values from the closed

        // Step 1: Partially flip the first bitmap
        match self.map.entry(start_high) {
            Entry::Vacant(e) => {
                e.insert(Bitmap::from_range(start_low..=u32::MAX));
            }
            Entry::Occupied(mut e) => {
                e.get_mut().flip_inplace(start_low..=u32::MAX);
                if e.get().is_empty() {
                    e.remove();
                }
            }
        }

        // Step 2: Flip intermediate bitmaps completely
        for i in start_high + 1..end_high {
            match self.map.entry(i) {
                Entry::Vacant(e) => {
                    e.insert(Bitmap::from_range(..));
                }
                Entry::Occupied(mut e) => {
                    e.get_mut().flip_inplace(..);
                    if e.get().is_empty() {
                        e.remove();
                    }
                }
            }
        }

        // Step 3: Partially flip the last bitmap
        match self.map.entry(end_high) {
            Entry::Vacant(e) => {
                e.insert(Bitmap::from_range(..=end_low));
            }
            Entry::Occupied(mut e) => {
                e.get_mut().flip_inplace(..=end_low);
                if e.get().is_empty() {
                    e.remove();
                }
            }
        }
    }

    /// Empties the Treemap
    ///
    /// # Examples
    ///
    /// ```
    /// use std::u64;
    /// use croaring::Treemap;
    ///
    /// let mut treemap = Treemap::new();
    ///
    /// treemap.add(1);
    /// treemap.add(u64::MAX);
    ///
    /// assert!(!treemap.is_empty());
    ///
    /// treemap.clear();
    ///
    /// assert!(treemap.is_empty());
    /// ```
    pub fn clear(&mut self) {
        self.map.clear();
    }

    /// Remove element from the Treemap
    ///
    /// # Examples
    ///
    /// ```
    /// use std::u64;
    /// use croaring::Treemap;
    ///
    /// let mut treemap = Treemap::new();
    /// treemap.add(u64::MAX);
    /// treemap.remove(u64::MAX);
    ///
    /// assert!(treemap.is_empty());
    /// ```
    pub fn remove(&mut self, element: u64) {
        let (hi, lo) = util::split(element);
        match self.map.entry(hi) {
            Entry::Vacant(_) => (),
            Entry::Occupied(mut bitmap) => {
                bitmap.get_mut().remove(lo);
                if bitmap.get().is_empty() {
                    bitmap.remove();
                }
            }
        }
    }

    /// Remove element from the Treemap, returning if a value was removed
    ///
    /// Returns true if the element was removed, false if it was not present
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::Treemap;
    ///
    /// let mut treemap = Treemap::new();
    /// treemap.add(u64::MAX);
    /// assert!(treemap.remove_checked(u64::MAX));
    /// assert!(!treemap.remove_checked(u64::MAX));
    /// ```
    pub fn remove_checked(&mut self, element: u64) -> bool {
        let (hi, lo) = util::split(element);
        match self.map.entry(hi) {
            Entry::Vacant(_) => false,
            Entry::Occupied(mut bitmap) => {
                let removed = bitmap.get_mut().remove_checked(lo);
                if bitmap.get().is_empty() {
                    bitmap.remove();
                }
                removed
            }
        }
    }

    /// Remove all values in range
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::Treemap;
    ///
    /// let mut treemap = Treemap::new();
    /// treemap.add_range(0..=10);
    /// treemap.remove_range(5..=15);
    /// assert_eq!(treemap.cardinality(), 5);
    /// ```
    pub fn remove_range<R: RangeBounds<u64>>(&mut self, range: R) {
        let (start, end) = range_to_inclusive(range);
        self.remove_range_inclusive(start, end);
    }

    fn remove_range_inclusive(&mut self, start: u64, end: u64) {
        if start > end {
            return;
        }
        let (start_high, start_low) = util::split(start);
        let (end_high, end_low) = util::split(end);

        if start_high == end_high {
            if let Entry::Occupied(mut e) = self.map.entry(start_high) {
                let bitmap = e.get_mut();
                bitmap.remove_range(start_low..=end_low);
                if bitmap.is_empty() {
                    e.remove();
                }
            }
            return;
        }

        let mut iter = self.map.range_mut(start_high..=end_high);
        let mut keys_to_remove = Vec::new();
        // Step 1: Remove first partial range if bitmap exists
        if let Some((&first_high, first_bitmap)) = iter.next() {
            if first_high == start_high {
                first_bitmap.remove_range(start_low..=u32::MAX);
                if first_bitmap.is_empty() {
                    keys_to_remove.push(first_high);
                }
            } else {
                keys_to_remove.push(first_high);
            }
        }
        // Step 2: Remove the final partial range if bitmap exists
        if let Some((&last_high, last_bitmap)) = iter.next_back() {
            if last_high == end_high {
                last_bitmap.remove_range(0..=end_low);
                if last_bitmap.is_empty() {
                    keys_to_remove.push(last_high);
                }
            } else {
                keys_to_remove.push(last_high);
            }
        }

        // Step 3: Remove all full ranges
        // Unfortunately, there's no way to remove a range from a BTreeMap, so
        // we have to build a list of keys to remove and then remove them individually
        keys_to_remove.extend(iter.map(|(&k, _)| k));

        for key in &keys_to_remove {
            self.map.remove(key);
        }
    }

    /// Reallocate memory to shrink the memory usage
    pub fn shrink_to_fit(&mut self) {
        for bitmap in self.map.values_mut() {
            _ = bitmap.shrink_to_fit();
        }
    }

    /// Selects the value at index `rank` in the bitmap
    ///
    /// The smallest value is at index 0. If 'rank' < cardinality(),
    /// returns Some, otherwise, returns None
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::Treemap;
    ///
    /// let mut treemap = Treemap::new();
    /// treemap.add_range(10..=20);
    /// assert_eq!(treemap.select(0), Some(10));
    /// assert_eq!(treemap.select(10), Some(20));
    /// assert_eq!(treemap.select(11), None);
    /// ```
    #[must_use]
    pub fn select(&self, mut rank: u64) -> Option<u64> {
        for (&key, bitmap) in &self.map {
            let sub_cardinality = bitmap.cardinality();
            if rank < sub_cardinality {
                // rank < sub_cadinality, and sub_cardinality is <= 2^32
                // so rank < 2^32
                let rank = u32::try_from(rank).unwrap();
                let low_bytes = bitmap
                    .select(rank)
                    .expect("select failed despite rank < cardinailty()");
                return Some(util::join(key, low_bytes));
            }
            rank -= sub_cardinality;
        }
        None
    }

    /// Returns the number of elements that are smaller or equal to `value`
    #[must_use]
    pub fn rank(&self, value: u64) -> u64 {
        let (hi, lo) = util::split(value);
        let mut rank = 0;
        let mut range = self.map.range(..=hi);
        if let Some((&key, bitmap)) = range.next_back() {
            rank += if key == hi {
                bitmap.rank(lo)
            } else {
                bitmap.cardinality()
            };
        }
        for (_, bitmap) in range {
            rank += bitmap.cardinality();
        }
        rank
    }

    /// Returns the index of `value` in the set (zero based index)
    ///
    /// If the set doesn't contain `value`, return None
    ///
    /// The difference with the `rank` method is that this method will return
    /// None if the value is not in the set, whereas `rank` will always return a value
    #[doc(alias = "get_index")]
    #[must_use]
    pub fn position(&self, value: u64) -> Option<u64> {
        let (hi, lo) = util::split(value);
        let mut range = self.map.range(..=hi);
        let mut index = u64::from(
            range
                .next_back()
                .filter(|(&key, _)| key == hi)
                .and_then(|(_, bitmap)| bitmap.position(lo))?,
        );
        for (_, bitmap) in range {
            index += bitmap.cardinality();
        }
        Some(index)
    }

    /// Returns the number of elements contained in the Treemap
    ///
    /// # Examples
    ///
    /// ```
    /// use std::u64;
    /// use croaring::Treemap;
    ///
    /// let mut treemap = Treemap::new();
    /// treemap.add(1);
    ///
    /// assert_eq!(treemap.cardinality(), 1);
    ///
    /// treemap.add(u64::MAX);
    ///
    /// assert_eq!(treemap.cardinality(), 2);
    /// ```
    #[must_use]
    pub fn cardinality(&self) -> u64 {
        self.map.values().map(Bitmap::cardinality).sum()
    }

    /// Returns the smallest value in the set.
    /// Returns [`u64::MAX`] if the set is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::Treemap;
    ///
    /// let mut treemap: Treemap = Treemap::new();
    /// let empty_treemap: Treemap = Treemap::new();
    ///
    /// treemap.add(120);
    /// treemap.add(1000);
    ///
    /// assert_eq!(treemap.minimum(), Some(120));
    /// assert_eq!(empty_treemap.minimum(), None);
    /// ```
    #[must_use]
    pub fn minimum(&self) -> Option<u64> {
        self.map
            .iter()
            .find_map(|(&k, bitmap)| bitmap.minimum().map(|low| util::join(k, low)))
    }

    /// Returns the greatest value in the set.
    /// Returns 0 if the set is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::Treemap;
    ///
    /// let mut treemap: Treemap = Treemap::new();
    /// let empty_treemap: Treemap = Treemap::new();
    ///
    /// treemap.add(120);
    /// treemap.add(1000);
    ///
    /// assert_eq!(treemap.maximum(), Some(1000));
    /// assert_eq!(empty_treemap.maximum(), None);
    /// ```
    #[must_use]
    pub fn maximum(&self) -> Option<u64> {
        self.map
            .iter()
            .rev()
            .find_map(|(&k, bitmap)| bitmap.maximum().map(|low| util::join(k, low)))
    }

    /// And computes the intersection between two treemaps and returns the
    /// result as a new treemap
    ///
    /// # Examples
    ///
    /// ```
    /// use std::u64;
    /// use croaring::Treemap;
    ///
    /// let mut treemap1 = Treemap::new();
    /// treemap1.add(u64::MAX);
    ///
    /// let mut treemap2 = Treemap::new();
    /// treemap2.add(u64::MAX);
    /// treemap2.add(2);
    ///
    /// let treemap3 = treemap1.and(&treemap2);
    ///
    /// assert!(treemap3.contains(u64::MAX));
    /// assert!(!treemap3.contains(2));
    /// ```
    #[must_use]
    pub fn and(&self, other: &Self) -> Self {
        let mut treemap = Treemap::new();

        for (key, bitmap) in &self.map {
            other
                .map
                .get(key)
                .map(|other_bitmap| treemap.map.insert(*key, bitmap.and(other_bitmap)));
        }

        treemap
    }

    /// Computes the intersection between two treemaps and stores the result
    /// in the current treemap
    ///
    /// # Examples
    ///
    /// ```
    /// use std::u64;
    /// use croaring::Treemap;
    ///
    /// let mut treemap1 = Treemap::new();
    /// treemap1.add(u64::MAX);
    ///
    /// let mut treemap2 = Treemap::new();
    /// treemap2.add(25);
    ///
    /// let mut treemap3 = Treemap::new();
    /// treemap3.add(u64::MAX);
    ///
    /// let mut treemap4 = Treemap::new();
    /// treemap4.add(u64::MAX);
    /// treemap4.add(25);
    ///
    /// treemap1.and_inplace(&treemap2);
    ///
    /// assert_eq!(treemap1.cardinality(), 0);
    /// assert!(!treemap1.contains(u64::MAX));
    /// assert!(!treemap1.contains(25));
    ///
    /// treemap3.and_inplace(&treemap4);
    ///
    /// assert_eq!(treemap3.cardinality(), 1);
    /// assert!(treemap3.contains(u64::MAX));
    /// assert!(!treemap3.contains(25));
    ///
    /// let mut treemap5 = Treemap::new();
    /// treemap5.add(u64::MAX);
    /// treemap5.and_inplace(&Treemap::new());
    /// assert_eq!(treemap5.cardinality(), 0);
    /// ```
    pub fn and_inplace(&mut self, other: &Self) {
        let mut keys_to_remove: Vec<u32> = Vec::new();

        for (key, bitmap) in &mut self.map {
            match other.map.get(key) {
                None => {
                    keys_to_remove.push(*key);
                }
                Some(other_bitmap) => {
                    bitmap.and_inplace(other_bitmap);
                    if bitmap.is_empty() {
                        keys_to_remove.push(*key);
                    }
                }
            }
        }

        for key in keys_to_remove {
            self.map.remove(&key);
        }
    }

    /// Or computes the union between two bitmaps and returns the result
    /// as a new bitmap
    ///
    /// # Examples
    ///
    /// ```
    /// use std::u64;
    /// use croaring::Treemap;
    ///
    /// let mut treemap1 = Treemap::new();
    /// treemap1.add(u64::MAX);
    ///
    /// let mut treemap2 = Treemap::new();
    /// treemap2.add(25);
    ///
    /// let treemap3 = treemap1.or(&treemap2);
    ///
    /// assert!(treemap3.cardinality() == 2);
    /// assert!(treemap3.contains(u64::MAX));
    /// assert!(treemap3.contains(25));
    /// ```
    #[must_use]
    pub fn or(&self, other: &Self) -> Self {
        let mut treemap = self.clone();

        for (key, other_bitmap) in &other.map {
            match treemap.map.entry(*key) {
                Entry::Vacant(current_map) => {
                    current_map.insert(other_bitmap.clone());
                }
                Entry::Occupied(mut bitmap) => {
                    bitmap.get_mut().or_inplace(other_bitmap);
                }
            };
        }

        treemap
    }

    /// Computes the intersection between two bitmaps and stores the result
    /// in the current bitmap
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::Treemap;
    ///
    /// let mut treemap1 = Treemap::new();
    /// treemap1.add(15);
    ///
    /// let mut treemap2 = Treemap::new();
    /// treemap2.add(25);
    ///
    /// let mut treemap3 = Treemap::new();
    /// treemap3.add(15);
    ///
    /// let mut bitmap4 = Treemap::new();
    /// bitmap4.add(15);
    /// bitmap4.add(25);
    ///
    /// treemap1.and_inplace(&treemap2);
    ///
    /// assert_eq!(treemap1.cardinality(), 0);
    /// assert!(!treemap1.contains(15));
    /// assert!(!treemap1.contains(25));
    ///
    /// treemap3.and_inplace(&bitmap4);
    ///
    /// assert_eq!(treemap3.cardinality(), 1);
    /// assert!(treemap3.contains(15));
    /// assert!(!treemap3.contains(25));
    /// ```
    pub fn or_inplace(&mut self, other: &Self) {
        for (key, other_bitmap) in &other.map {
            match self.map.entry(*key) {
                Entry::Vacant(current_map) => {
                    current_map.insert(other_bitmap.clone());
                }
                Entry::Occupied(mut current_map) => {
                    current_map.get_mut().or_inplace(other_bitmap);
                }
            };
        }
    }

    /// Computes the symmetric difference (xor) between two treemaps
    /// and returns a new treemap.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::u64;
    /// use croaring::Treemap;
    ///
    /// let mut treemap1 = Treemap::new();
    /// treemap1.add(15);
    /// treemap1.add(u64::MAX);
    ///
    /// let mut treemap2 = Treemap::new();
    /// treemap2.add(u64::MAX);
    /// treemap2.add(35);
    ///
    /// let treemap3 = treemap1.xor(&treemap2);
    ///
    /// assert_eq!(treemap3.cardinality(), 2);
    /// assert!(treemap3.contains(15));
    /// assert!(!treemap3.contains(25));
    /// assert!(treemap3.contains(35));
    /// ```
    #[must_use]
    pub fn xor(&self, other: &Self) -> Self {
        let mut treemap = self.clone();

        for (key, other_bitmap) in &other.map {
            match treemap.map.entry(*key) {
                Entry::Vacant(current_map) => {
                    current_map.insert(other_bitmap.clone());
                }
                Entry::Occupied(mut bitmap) => {
                    bitmap.get_mut().xor_inplace(other_bitmap);
                }
            };
        }

        treemap
    }

    /// Inplace version of xor, stores result in the current treemap.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::u64;
    /// use croaring::Treemap;
    ///
    /// let mut treemap1 = Treemap::new();
    /// treemap1.add(15);
    /// treemap1.add(25);
    ///
    /// let mut treemap2 = Treemap::new();
    /// treemap2.add(25);
    /// treemap2.add(35);
    ///
    /// treemap1.xor_inplace(&treemap2);
    ///
    /// assert_eq!(treemap1.cardinality(), 2);
    /// assert!(treemap1.contains(15));
    /// assert!(treemap1.contains(35));
    ///
    /// let mut treemap3 = Treemap::new();
    /// treemap3.add(15);
    /// treemap3.xor_inplace(&Treemap::new());
    /// assert_eq!(treemap3.cardinality(), 1);
    /// assert!(treemap3.contains(15));
    /// ```
    pub fn xor_inplace(&mut self, other: &Self) {
        let mut keys_to_remove: Vec<u32> = Vec::new();

        for (key, other_bitmap) in &other.map {
            match self.map.entry(*key) {
                Entry::Vacant(bitmap) => {
                    bitmap.insert(other_bitmap.clone());
                }
                Entry::Occupied(mut bitmap) => {
                    bitmap.get_mut().xor_inplace(other_bitmap);
                    if bitmap.get().is_empty() {
                        keys_to_remove.push(*key);
                    }
                }
            };
        }

        for key in keys_to_remove {
            self.map.remove(&key);
        }
    }

    /// Computes the difference between two bitmaps and returns the result.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::u64;
    /// use croaring::Treemap;
    ///
    /// let mut treemap1 = Treemap::new();
    ///
    /// treemap1.add(15);
    /// treemap1.add(u64::MAX);
    ///
    /// let mut treemap2 = Treemap::new();
    ///
    /// treemap2.add(u64::MAX);
    /// treemap2.add(35);
    ///
    /// let treemap3 = treemap1.andnot(&treemap2);
    ///
    /// assert_eq!(treemap3.cardinality(), 1);
    /// assert!(treemap3.contains(15));
    /// assert!(!treemap3.contains(u64::MAX));
    /// assert!(!treemap3.contains(35));
    /// ```
    #[must_use]
    pub fn andnot(&self, other: &Self) -> Self {
        let mut treemap = Treemap::new();

        for (key, bitmap) in &self.map {
            if let Some(other_bitmap) = other.map.get(key) {
                treemap.map.insert(*key, bitmap.andnot(other_bitmap));
            }
        }

        treemap
    }

    /// Computes the difference between two treemaps and stores the result
    /// in the current treemap.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::u32;
    /// use std::u64;
    /// use croaring::Treemap;
    ///
    /// let mut treemap1 = Treemap::new();
    ///
    /// treemap1.add(15);
    /// treemap1.add(25);
    /// treemap1.add(u64::MAX - 10);
    ///
    /// let mut treemap2 = Treemap::new();
    ///
    /// treemap2.add(25);
    /// treemap2.add(35);
    ///
    /// treemap1.andnot_inplace(&treemap2);
    ///
    /// assert_eq!(treemap1.cardinality(), 2);
    /// assert!(treemap1.contains(15));
    /// assert!(treemap1.contains(u64::MAX - 10));
    /// assert!(!treemap1.contains(u64::MAX));
    /// assert!(!treemap1.contains(35));
    ///
    /// let mut treemap3 = Treemap::new();
    /// treemap3.add(15);
    /// let treemap4 = Treemap::new();
    /// treemap3.andnot_inplace(&treemap4);
    /// assert_eq!(treemap3.cardinality(), 1);
    /// assert!(treemap3.contains(15));
    /// ```
    pub fn andnot_inplace(&mut self, other: &Self) {
        for (key, bitmap) in &mut self.map {
            if let Some(other_bitmap) = other.map.get(key) {
                bitmap.andnot_inplace(other_bitmap);
            }
        }
    }

    /// Returns a vector containing all of the integers stored in the Treemap
    /// in a sorted order.
    ///
    /// ```
    /// use std::u64;
    /// use croaring::Treemap;
    ///
    /// let mut treemap = Treemap::new();
    /// treemap.add(25);
    /// treemap.add(15);
    /// treemap.add(u64::MAX);
    ///
    /// assert_eq!(treemap.to_vec(), [15, 25, u64::MAX]);
    /// ```
    #[must_use]
    pub fn to_vec(&self) -> Vec<u64> {
        let treemap_size: usize = self.cardinality().try_into().unwrap();

        let mut result: Vec<u64> = Vec::with_capacity(treemap_size);
        let mut buffer = [0; 1024];

        for (&key, bitmap) in &self.map {
            let mut iter = bitmap.iter();
            loop {
                let n = iter.next_many(&mut buffer);
                if n == 0 {
                    break;
                }
                result.extend(buffer[..n].iter().map(|&bit| util::join(key, bit)));
            }
        }

        result
    }

    /// Computes the serialized size in bytes of the treemap in format `S`.
    #[must_use]
    pub fn get_serialized_size_in_bytes<S: Serializer>(&self) -> usize {
        S::get_serialized_size_in_bytes(self)
    }

    /// Serializes the treemap to a slice of bytes in format `S`.
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::{Treemap, Portable};
    ///
    /// let treemap: Treemap = (1..5).collect();
    ///
    /// let serialized_buffer = treemap.serialize::<Portable>();
    ///
    /// let deserialized_treemap = Treemap::deserialize::<Portable>(&serialized_buffer);
    ///
    /// assert_eq!(treemap, deserialized_treemap);
    /// ```
    #[must_use]
    pub fn serialize<S: Serializer>(&self) -> Vec<u8> {
        let mut dst = Vec::new();
        self.serialize_into::<S>(&mut dst);
        dst
    }

    /// Serializes a treemap to a slice of bytes in format `S`, re-using existing capacity
    ///
    /// `dst` is not cleared, data is added after any existing data. Returns the added slice of `dst`.
    /// If `dst` is empty, it is guaranteed to hold only the serialized data after this call
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::{Treemap, Portable};
    ///
    /// let original_treemap_1: Treemap = (1..5).collect();
    /// let original_treemap_2: Treemap = (1..10).collect();
    ///
    /// let mut data = Vec::new();
    /// for treemap in [original_treemap_1, original_treemap_2] {
    ///     data.clear();
    ///     let serialized_output = treemap.serialize_into::<Portable>(&mut data);
    ///     // do something with serialized_output
    /// }
    /// ```
    pub fn serialize_into<'a, S: Serializer>(&self, dst: &'a mut Vec<u8>) -> &'a [u8] {
        S::serialize_into(self, dst)
    }

    /// Serializes a treemap to a writer in format `S`.
    ///
    /// Returns the number of bytes written to the writer.
    ///
    /// Note that the [`Frozen`][crate::Frozen] format requires alignment to 32 bytes. This function
    /// assumes the writer starts at an aligned position (and cannot check this).
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::{Treemap, Portable};
    /// use std::io::Cursor;
    ///
    /// let treemap: Treemap = (1..5).collect();
    ///
    /// let mut cursor = Cursor::new(Vec::new());
    /// treemap.serialize_into_writer::<Portable, _>(&mut cursor).unwrap();
    ///
    /// let deserialized_treemap = Treemap::try_deserialize::<Portable>(cursor.into_inner().as_slice()).unwrap();
    ///
    /// assert_eq!(treemap, deserialized_treemap);
    /// ```
    pub fn serialize_into_writer<S: Serializer, W: io::Write>(
        &self,
        writer: W,
    ) -> io::Result<usize> {
        S::serialize_into_writer(self, writer)
    }

    /// Given a serialized treemap as slice of bytes in format `S`, returns a `Bitmap` instance.
    /// See example of [`Self::serialize`] function.
    ///
    /// On invalid input returns None.
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::{Treemap, Portable};
    ///
    /// let original_treemap: Treemap = (1..5).collect();
    /// let serialized_buffer = original_treemap.serialize::<Portable>();
    ///
    /// let deserialized_treemap = Treemap::try_deserialize::<Portable>(&serialized_buffer);
    /// assert_eq!(original_treemap, deserialized_treemap.unwrap());
    ///
    /// let invalid_buffer: Vec<u8> = vec![3];
    /// let deserialized_treemap = Treemap::try_deserialize::<Portable>(&invalid_buffer);
    /// assert!(deserialized_treemap.is_none());
    /// ```
    #[must_use]
    pub fn try_deserialize<D: Deserializer>(buffer: &[u8]) -> Option<Self> {
        D::try_deserialize(buffer).map(|(treemap, _bytes_read)| treemap)
    }

    /// Given a serialized treemap as slice of bytes in format `S `, returns a treemap instance.
    /// See example of [`Self::serialize`] function.
    ///
    /// On invalid input returns empty treemap.
    #[must_use]
    pub fn deserialize<D: Deserializer>(buffer: &[u8]) -> Self {
        Self::try_deserialize::<D>(buffer).unwrap_or_default()
    }

    /// Creates a new treemap from a slice of u64 integers
    ///
    /// # Examples
    ///
    /// ```
    /// use std::u64;
    /// use croaring::Treemap;
    ///
    /// let elements = vec![1, 2, u64::MAX];
    ///
    /// let treemap = Treemap::of(&elements);
    ///
    /// let mut treemap2 = Treemap::new();
    ///
    /// for element in &elements {
    ///     treemap2.add(*element);
    /// }
    ///
    /// assert!(treemap.contains(1));
    /// assert!(treemap.contains(2));
    /// assert!(treemap.contains(u64::MAX));
    /// assert!(!treemap.contains(3));
    /// assert_eq!(treemap, treemap2);
    /// ```
    #[must_use]
    pub fn of(elements: &[u64]) -> Self {
        let mut treemap = Treemap::new();

        for element in elements {
            treemap.add(*element);
        }

        treemap
    }

    /// Compresses treemap's bitmaps. Returns true if any of the bitmaps
    /// were modified.
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::Treemap;
    ///
    /// let mut treemap: Treemap = (100..1000).collect();
    ///
    /// assert_eq!(treemap.cardinality(), 900);
    /// assert!(treemap.run_optimize());
    /// ```
    pub fn run_optimize(&mut self) -> bool {
        self.map
            .iter_mut()
            .fold(false, |result, (_, bitmap)| bitmap.run_optimize() || result)
    }

    /// Removes run-length encoding from treemap's bitmaps. Returns true if
    /// change was made to any of the bitmaps.
    ///
    /// # Examples
    ///
    /// ```
    /// use croaring::Treemap;
    ///
    /// let mut treemap: Treemap = (100..1000).collect();
    ///
    /// assert_eq!(treemap.cardinality(), 900);
    /// assert!(treemap.run_optimize());
    /// assert!(treemap.remove_run_compression());
    /// ```
    pub fn remove_run_compression(&mut self) -> bool {
        self.map.iter_mut().fold(false, |result, (_, bitmap)| {
            bitmap.remove_run_compression() || result
        })
    }

    pub(super) fn get_or_create(&mut self, bucket: u32) -> &mut Bitmap {
        self.map.entry(bucket).or_default()
    }
}

fn range_to_inclusive<R: RangeBounds<u64>>(range: R) -> (u64, u64) {
    let start = match range.start_bound() {
        Bound::Included(&i) => i,
        Bound::Excluded(&i) => match i.checked_add(1) {
            Some(i) => i,
            None => return (1, 0),
        },
        Bound::Unbounded => 0,
    };
    let end = match range.end_bound() {
        Bound::Included(&i) => i,
        Bound::Excluded(&i) => match i.checked_sub(1) {
            Some(i) => i,
            None => return (1, 0),
        },
        Bound::Unbounded => u64::MAX,
    };
    (start, end)
}