1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
//! A statistics-driven micro-benchmarking library written in Rust.
//!
//! This crate is a microbenchmarking library which aims to provide strong
//! statistical confidence in detecting and estimating the size of performance
//! improvements and regressions, whle also being easy to use.
//!
//! See
//! [the user guide](https://japaric.github.io/criterion.rs/book/index.html)
//! for examples as well as details on the measurement and analysis process,
//! and the output.
//!
//! ## Features:
//! * Benchmark Rust code as well as external programs
//! * Collects detailed statistics, providing strong confidence that changes
//!   to performance are real, not measurement noise
//! * Produces detailed charts, providing thorough understanding of your code's
//!   performance behavior.

#![deny(missing_docs)]
#![cfg_attr(feature = "real_blackbox", feature(test))]
#![cfg_attr(not(feature = "html_reports"), allow(dead_code))]

extern crate atty;
extern crate clap;
extern crate criterion_stats as stats;
extern crate failure;
extern crate itertools;
extern crate itertools_num;
extern crate serde;
extern crate serde_json;
extern crate simplelog;

#[cfg(feature = "html_reports")]
extern crate criterion_plot;

#[cfg(feature = "html_reports")]
extern crate handlebars;

#[cfg(feature = "real_blackbox")]
extern crate test;

#[macro_use]
extern crate log;

#[macro_use]
extern crate failure_derive;

#[macro_use]
extern crate serde_derive;

// Needs to be declared before other modules
// in order to be usable there.
#[macro_use]
mod macros_private;
#[macro_use]
mod analysis;
mod benchmark;
mod error;
mod estimate;
mod format;
mod fs;
mod program;
mod report;
mod routine;
mod macros;

#[cfg(feature = "html_reports")]
mod kde;

#[cfg(feature = "html_reports")]
mod plot;

#[cfg(feature = "html_reports")]
mod html;

use std::default::Default;
use std::iter::IntoIterator;
use std::process::Command;
use std::time::{Duration, Instant};
use std::{fmt, mem};
use std::cell::RefCell;
use std::collections::BTreeMap;

use estimate::{Distributions, Estimates, Statistic};
use report::{CliReport, Report, Reports};
use benchmark::BenchmarkConfig;
use benchmark::NamedRoutine;
use routine::Function;
use plotting::Plotting;

#[cfg(feature = "html_reports")]
use html::Html;

pub use benchmark::{Benchmark, BenchmarkDefinition, ParameterizedBenchmark};

fn debug_enabled() -> bool {
    std::env::vars().any(|(key, _)| key == "CRITERION_DEBUG")
}

/// Initialize the logging for a Criterion benchmark. This should be called
/// first before executing Criterion benchmarks, unless the user provides their
/// own logging infrastructure.
pub fn init_logging() {
    use simplelog::*;
    let filter = if debug_enabled() {
        LevelFilter::max()
    } else {
        LevelFilter::Warn
    };

    SimpleLogger::init(filter, Config::default()).unwrap();
}

/// A function that is opaque to the optimizer, used to prevent the compiler from
/// optimizing away computations in a benchmark.
///
/// This variant is backed by the (unstable) test::black_box function.
#[cfg(feature = "real_blackbox")]
pub fn black_box<T>(dummy: T) -> T {
    test::black_box(dummy)
}

/// A function that is opaque to the optimizer, used to prevent the compiler from
/// optimizing away computations in a benchmark.
///
/// This variant is stable-compatible, but it may cause some performance overhead
/// or fail to prevent code from being eliminated.
#[cfg(not(feature = "real_blackbox"))]
pub fn black_box<T>(dummy: T) -> T {
    unsafe {
        let ret = std::ptr::read_volatile(&dummy);
        std::mem::forget(dummy);
        ret
    }
}

/// Representing a function to benchmark together with a name of that function.
/// Used together with `bench_functions` to represent one out of multiple functions
/// under benchmark.
pub struct Fun<I: fmt::Debug> {
    f: NamedRoutine<I>,
}

impl<I> Fun<I>
where
    I: fmt::Debug + 'static,
{
    /// Create a new `Fun` given a name and a closure
    pub fn new<F>(name: &str, f: F) -> Fun<I>
    where
        F: FnMut(&mut Bencher, &I) + 'static,
    {
        let routine = NamedRoutine {
            id: name.to_owned(),
            f: Box::new(RefCell::new(Function::new(f))),
        };

        Fun { f: routine }
    }
}

/// Helper struct to time routines
///
/// This struct provides different timing loops as methods. Each timing loop provides a different
/// way to time a routine and each has advantages and disadvantages.
///
/// * If your routine returns a value with an expensive `drop` method, use
///   `iter_with_large_drop`.
/// * If your routine requires some per-iteration setup that shouldn't be timed,
///   use `iter_with_setup` or (if the setup is expensive) use `iter_with_large_setup`
///   to construct a pool of input data ahead of time
/// * Otherwise, use `iter`.
#[derive(Clone, Copy)]
pub struct Bencher {
    iters: u64,
    elapsed: Duration,
}

impl Bencher {
    /// Times a `routine` by executing it many times and timing the total elapsed time.
    ///
    /// Prefer this timing loop when `routine` returns a value that doesn't have a destructor.
    ///
    /// # Timing loop
    ///
    /// ```rust,no_run
    /// # use std::time::Instant;
    /// # fn routine() {}
    /// # let iters = 4_000_000;
    /// let start = Instant::now();
    /// for _ in 0..iters {
    ///     routine();
    /// }
    /// let elapsed = start.elapsed();
    /// ```
    ///
    /// # Timing model
    ///
    /// Note that the `Bencher` also times the time required to destroy the output of `routine()`.
    /// Therefore prefer this timing loop when the runtime of `mem::drop(O)` is negligible compared
    /// to the runtime of the `routine`.
    ///
    /// ```text
    /// elapsed = Instant::now + iters * (routine + mem::drop(O) + Range::next)
    /// ```
    ///
    pub fn iter<O, R>(&mut self, mut routine: R)
    where
        R: FnMut() -> O,
    {
        let start = Instant::now();
        for _ in 0..self.iters {
            black_box(routine());
        }
        self.elapsed = start.elapsed();
    }

    /// Times a `routine` that requires some `setup` on each iteration.
    ///
    /// For example, use this loop to benchmark sorting algorithms because they require unsorted
    /// data on each iteration.
    ///
    /// # Example
    ///
    /// ```rust,no_run
    /// extern crate criterion;
    ///
    /// use criterion::Bencher;
    ///
    /// fn create_scrambled_data() -> Vec<u64> {
    ///     # vec![]
    ///     // ...
    /// }
    ///
    /// // The sorting algorithm to test
    /// fn sort(data: &mut [u64]) {
    ///     // ...
    /// }
    ///
    /// fn benchmark(b: &mut Bencher) {
    ///     let data = create_scrambled_data();
    ///
    ///     b.iter_with_setup(move || data.to_vec(), |mut data| sort(&mut data))
    /// }
    ///
    /// # fn main() {}
    /// ```
    ///
    /// # Timing loop
    ///
    /// ```rust,no_run
    /// # use std::time::{Instant, Duration};
    /// # use std::mem;
    /// # fn setup() {}
    /// # fn routine(input: ()) {}
    /// # let iters = 4_000_000;
    /// let mut elapsed = Duration::new(0, 0);
    /// for _ in 0..iters {
    ///     let input = setup();
    ///
    ///     let start = Instant::now();
    ///     let output = routine(input);
    ///     let elapsed_in_iter = start.elapsed();
    ///
    ///     mem::drop(output);
    ///
    ///     elapsed = elapsed + elapsed_in_iter;
    /// }
    /// ```
    ///
    /// # Timing model
    ///
    /// ``` text
    /// elapsed = iters * (Instant::now + routine)
    /// ```
    pub fn iter_with_setup<I, O, S, R>(&mut self, mut setup: S, mut routine: R)
    where
        S: FnMut() -> I,
        R: FnMut(I) -> O,
    {
        self.elapsed = Duration::from_secs(0);
        for _ in 0..self.iters {
            let input = setup();

            let start = Instant::now();
            let output = black_box(routine(black_box(input)));
            let elapsed = start.elapsed();

            mem::drop(output);

            self.elapsed += elapsed;
        }
    }

    /// Times a `routine` by collecting its output on each iteration. This avoids timing the
    /// destructor of the value returned by `routine`.
    ///
    /// WARNING: This requires `iters * mem::size_of::<O>()` of memory, and `iters` is not under the
    /// control of the caller.
    ///
    /// # Timing loop
    ///
    /// ```rust,no_run
    /// # use std::mem;
    /// # use std::time::Instant;
    /// # let iters = 4_000_000;
    /// # fn routine() {}
    /// let mut outputs = Vec::with_capacity(iters);
    ///
    /// let start = Instant::now();
    /// for _ in 0..iters {
    ///     outputs.push(routine());
    /// }
    /// let elapsed = start.elapsed();
    ///
    /// mem::drop(outputs);
    /// ```
    ///
    /// # Timing model
    ///
    /// ``` text
    /// elapsed = Instant::now + iters * (routine + Vec::push + Range::next)
    /// ```
    ///
    pub fn iter_with_large_drop<O, R>(&mut self, mut routine: R)
    where
        R: FnMut() -> O,
    {
        let mut outputs = Vec::with_capacity(self.iters as usize);

        let start = Instant::now();
        for _ in 0..self.iters {
            outputs.push(black_box(routine()));
        }
        self.elapsed = start.elapsed();

        mem::drop(outputs);
    }

    /// Times a `routine` that needs to consume its input by first creating a pool of inputs.
    ///
    /// This function is handy for benchmarking destructors.
    ///
    /// WARNING This requires `iters * mem::size_of::<I>()` of memory, and `iters` is not under the
    /// control of the caller.
    ///
    /// # Timing loop
    ///
    /// ```rust,no_run
    /// # use std::time::Instant;
    /// # fn setup() {}
    /// # fn routine(input: ()) {}
    /// # let iters = 4_000_000;
    /// let inputs: Vec<()> = (0..iters).map(|_| setup()).collect();
    /// let start = Instant::now();
    ///
    /// for input in inputs {
    ///     routine(input);
    /// }
    ///
    /// let elapsed = start.elapsed();
    /// ```
    ///
    /// # Timing model
    ///
    /// ``` text
    /// elapsed = Instant::now + iters * (routine + vec::IntoIter::next)
    /// ```
    pub fn iter_with_large_setup<I, S, R>(&mut self, mut setup: S, mut routine: R)
    where
        S: FnMut() -> I,
        R: FnMut(I),
    {
        let inputs = (0..self.iters).map(|_| setup()).collect::<Vec<_>>();

        let start = Instant::now();
        for input in inputs {
            routine(black_box(input));
        }
        self.elapsed = start.elapsed();
    }
}

/// The benchmark manager
///
/// `Criterion` lets you configure and execute benchmarks
///
/// Each benchmark consists of four phases:
///
/// - **Warm-up**: The routine is repeatedly executed, to let the CPU/OS/JIT/interpreter adapt to
/// the new load
/// - **Measurement**: The routine is repeatedly executed, and timing information is collected into
/// a sample
/// - **Analysis**: The sample is analyzed and distiled into meaningful statistics that get
/// reported to stdout, stored in files, and plotted
/// - **Comparison**: The current sample is compared with the sample obtained in the previous
/// benchmark.
pub struct Criterion {
    config: BenchmarkConfig,
    plotting: Plotting,
    filter: Option<String>,
    report: Box<Report>,
    output_directory: String,
}

impl Default for Criterion {
    /// Creates a benchmark manager with the following default settings:
    ///
    /// - Sample size: 100 measurements
    /// - Warm-up time: 3 s
    /// - Measurement time: 5 s
    /// - Bootstrap size: 100 000 resamples
    /// - Noise threshold: 0.01 (1%)
    /// - Confidence level: 0.95
    /// - Significance level: 0.05
    /// - Plotting: enabled (if gnuplot is available)
    /// - No filter
    fn default() -> Criterion {
        #[allow(unused_mut, unused_assignments)]
        let mut plotting = Plotting::NotAvailable;

        let mut reports: Vec<Box<Report>> = vec![];
        reports.push(Box::new(CliReport::new(false, false, false)));

        #[cfg(feature = "html_reports")]
        {
            plotting = if criterion_plot::version().is_ok() {
                Plotting::Enabled
            } else {
                println!("Gnuplot not found, disabling plotting");

                Plotting::NotAvailable
            };
            reports.push(Box::new(Html::new()));
        }

        Criterion {
            config: BenchmarkConfig {
                confidence_level: 0.95,
                measurement_time: Duration::new(5, 0),
                noise_threshold: 0.01,
                nresamples: 100_000,
                sample_size: 100,
                significance_level: 0.05,
                warm_up_time: Duration::new(3, 0),
            },
            plotting: plotting,
            filter: None,
            report: Box::new(Reports::new(reports)),
            output_directory: "target/criterion".to_owned(),
        }
    }
}

impl Criterion {
    /// Changes the default size of the sample for benchmarks run with this runner.
    ///
    /// A bigger sample should yield more accurate results, if paired with a "sufficiently" large
    /// measurement time, on the other hand, it also increases the analysis time
    ///
    /// # Panics
    ///
    /// Panics if set to zero
    pub fn sample_size(mut self, n: usize) -> Criterion {
        assert!(n > 0);

        self.config.sample_size = n;
        self
    }

    /// Changes the default warm up time for benchmarks run with this runner.
    ///
    /// # Panics
    ///
    /// Panics if the input duration is zero
    pub fn warm_up_time(mut self, dur: Duration) -> Criterion {
        assert!(dur.to_nanos() > 0);

        self.config.warm_up_time = dur;
        self
    }

    /// Changes the default measurement time for benchmarks run with this runner.
    ///
    /// With a longer time, the measurement will become more resilient to transitory peak loads
    /// caused by external programs
    ///
    /// **Note**: If the measurement time is too "low", Criterion will automatically increase it
    ///
    /// # Panics
    ///
    /// Panics if the input duration in zero
    pub fn measurement_time(mut self, dur: Duration) -> Criterion {
        assert!(dur.to_nanos() > 0);

        self.config.measurement_time = dur;
        self
    }

    /// Changes the default number of resamples for benchmarks run with this runner.
    ///
    /// Number of resamples to use for the
    /// [bootstrap](http://en.wikipedia.org/wiki/Bootstrapping_(statistics)#Case_resampling)
    ///
    /// A larger number of resamples reduces the random sampling errors, which are inherent to the
    /// bootstrap method, but also increases the analysis time
    ///
    /// # Panics
    ///
    /// Panics if the number of resamples is set to zero
    pub fn nresamples(mut self, n: usize) -> Criterion {
        assert!(n > 0);

        self.config.nresamples = n;
        self
    }

    /// Changes the default noise threshold for benchmarks run with this runner.
    ///
    /// This threshold is used to decide if an increase of `X%` in the execution time is considered
    /// significant or should be flagged as noise
    ///
    /// *Note:* A value of `0.02` is equivalent to `2%`
    ///
    /// # Panics
    ///
    /// Panics is the threshold is set to a negative value
    pub fn noise_threshold(mut self, threshold: f64) -> Criterion {
        assert!(threshold >= 0.0);

        self.config.noise_threshold = threshold;
        self
    }

    /// Changes the default confidence level for benchmarks run with this runner
    ///
    /// The confidence level is used to calculate the
    /// [confidence intervals](https://en.wikipedia.org/wiki/Confidence_interval) of the estimated
    /// statistics
    ///
    /// # Panics
    ///
    /// Panics if the confidence level is set to a value outside the `(0, 1)` range
    pub fn confidence_level(mut self, cl: f64) -> Criterion {
        assert!(cl > 0.0 && cl < 1.0);

        self.config.confidence_level = cl;
        self
    }

    /// Changes the default [significance level](https://en.wikipedia.org/wiki/Statistical_significance)
    /// for benchmarks run with this runner
    ///
    /// The significance level is used for
    /// [hypothesis testing](https://en.wikipedia.org/wiki/Statistical_hypothesis_testing)
    ///
    /// # Panics
    ///
    /// Panics if the significance level is set to a value outside the `(0, 1)` range
    pub fn significance_level(mut self, sl: f64) -> Criterion {
        assert!(sl > 0.0 && sl < 1.0);

        self.config.significance_level = sl;
        self
    }

    /// Enables plotting
    pub fn with_plots(mut self) -> Criterion {
        match self.plotting {
            Plotting::NotAvailable => {}
            _ => self.plotting = Plotting::Enabled,
        }

        self
    }

    /// Disabled plotting
    pub fn without_plots(mut self) -> Criterion {
        match self.plotting {
            Plotting::NotAvailable => {}
            _ => self.plotting = Plotting::Disabled,
        }

        self
    }

    /// Checks if plotting is possible
    pub fn can_plot(&self) -> bool {
        match self.plotting {
            Plotting::NotAvailable => false,
            _ => true,
        }
    }

    /// Filters the benchmarks. Only benchmarks with names that contain the
    /// given string will be executed.
    pub fn with_filter<S: Into<String>>(mut self, filter: S) -> Criterion {
        self.filter = Some(filter.into());

        self
    }

    /// Set the output directory (currently for testing only)
    #[doc(hidden)]
    pub fn output_directory(mut self, path: &std::path::Path) -> Criterion {
        self.output_directory = path.to_string_lossy().into_owned();

        self
    }

    /// Configure this criterion struct based on the command-line arguments to
    /// this process.
    pub fn configure_from_args(mut self) -> Criterion {
        use clap::{App, Arg};
        let matches = App::new("Criterion Benchmark")
            .arg(Arg::with_name("FILTER")
                .help("Skip benchmarks whose names do not contain FILTER.")
                .index(1))
            .arg(Arg::with_name("color")
                .short("c")
                .long("color")
                .alias("colour")
                .takes_value(true)
                .possible_values(&["auto", "always", "never"])
                .default_value("auto")
                .help("Configure coloring of output. always = always colorize output, never = never colorize output, auto = colorize output if output is a tty and compiled for unix."))
            .arg(Arg::with_name("verbose")
                .short("v")
                .long("verbose")
                .help("Print additional statistical information."))
            .arg(Arg::with_name("noplot")
                .short("np")
                .long("noplot")
                .help("Disable plot and HTML generation."))
            //Ignored but always passed to benchmark executables
            .arg(Arg::with_name("bench")
                .hidden(true)
                .long("bench"))
            .arg(Arg::with_name("version")
                .hidden(true)
                .short("V")
                .long("version"))
            .after_help("
This executable is a Criterion.rs benchmark.
See https://github.com/japaric/criterion.rs for more details.

To enable debug output, define the environment variable CRITERION_DEBUG.
Criterion.rs will output more debug information and will save the gnuplot
scripts alongside the generated plots.
")
            .get_matches();

        if let Some(filter) = matches.value_of("FILTER") {
            self = self.with_filter(filter);
        }

        let verbose = matches.is_present("verbose");
        let stdout_isatty = atty::is(atty::Stream::Stdout);
        let mut enable_text_overwrite = stdout_isatty && !verbose && !debug_enabled();
        let enable_text_coloring;
        match matches.value_of("color") {
            Some("always") => {
                enable_text_coloring = true;
            }
            Some("never") => {
                enable_text_coloring = false;
                enable_text_overwrite = false;
            }
            _ => enable_text_coloring = cfg!(unix) && stdout_isatty,
        }

        if matches.is_present("noplot") {
            match self.plotting {
                Plotting::NotAvailable => {}
                _ => self.plotting = Plotting::Disabled,
            }
        }

        let mut reports: Vec<Box<Report>> = vec![];
        reports.push(Box::new(CliReport::new(
            enable_text_overwrite,
            enable_text_coloring,
            verbose,
        )));

        #[cfg(feature = "html_reports")]
        {
            reports.push(Box::new(Html::new()));
        }

        self.report = Box::new(Reports::new(reports));

        self
    }

    fn filter_matches(&self, id: &str) -> bool {
        match self.filter {
            Some(ref string) => id.contains(string),
            None => true,
        }
    }

    /// Benchmarks a function
    ///
    /// The function under test must follow the setup - bench - teardown pattern:
    ///
    /// ```rust,no_run
    /// use self::criterion::{Bencher, Criterion};
    ///
    /// fn routine(b: &mut Bencher) {
    ///     // Setup (construct data, allocate memory, etc)
    ///
    ///     b.iter(|| {
    ///         // Code to benchmark goes here
    ///     })
    ///
    ///     // Teardown (free resources)
    /// }
    ///
    /// Criterion::default().bench_function("routine", routine);
    /// ```
    pub fn bench_function<F>(&mut self, id: &str, f: F) -> &mut Criterion
    where
        F: FnMut(&mut Bencher) + 'static,
    {
        self.bench(id, Benchmark::new(id, f))
    }

    /// Benchmarks multiple functions
    ///
    /// All functions get the same input and are compared with the other implementations.
    /// Works similar to `bench`, but with multiple functions.
    ///
    /// ``` rust,no_run
    /// # use self::criterion::{Bencher, Criterion, Fun};
    /// # fn seq_fib(i: &u32) {}
    /// # fn par_fib(i: &u32) {}
    ///
    /// fn bench_seq_fib(b: &mut Bencher, i: &u32) {
    ///     b.iter(|| {
    ///         seq_fib(i);
    ///     });
    /// }
    ///
    /// fn bench_par_fib(b: &mut Bencher, i: &u32) {
    ///     b.iter(|| {
    ///         par_fib(i);
    ///     });
    /// }
    ///
    /// let sequential_fib = Fun::new("Sequential", bench_seq_fib);
    /// let parallel_fib = Fun::new("Parallel", bench_par_fib);
    /// let funs = vec![sequential_fib, parallel_fib];
    ///
    /// Criterion::default().bench_functions("Fibonacci", funs, 14);
    /// ```
    pub fn bench_functions<I>(&mut self, id: &str, funs: Vec<Fun<I>>, input: I) -> &mut Criterion
    where
        I: fmt::Debug + 'static,
    {
        let benchmark = ParameterizedBenchmark::with_functions(
            funs.into_iter().map(|fun| fun.f).collect(),
            vec![input],
        );

        self.bench(id, benchmark)
    }

    /// Benchmarks a function under various inputs
    ///
    /// This is a convenience method to execute several related benchmarks. Each benchmark will
    /// receive the id: `${id}/${input}`.
    ///
    /// ```rust,no_run
    /// use self::criterion::{Bencher, Criterion};
    ///
    /// Criterion::default()
    ///     .bench_function_over_inputs("from_elem", |b: &mut Bencher, size: &usize| {
    ///         b.iter(|| vec![0u8; *size]);
    ///     }, vec![1024, 2048, 4096]);
    /// ```
    pub fn bench_function_over_inputs<I, F>(&mut self, id: &str, f: F, inputs: I) -> &mut Criterion
    where
        I: IntoIterator,
        I::Item: fmt::Debug + 'static,
        F: FnMut(&mut Bencher, &I::Item) + 'static,
    {
        self.bench(id, ParameterizedBenchmark::new(id, f, inputs))
    }

    /// Benchmarks an external program
    ///
    /// The external program must conform to the following specification:
    ///
    /// ```rust,no_run
    /// # use std::io::{self, BufRead};
    /// # use std::time::Instant;
    /// # use std::time::Duration;
    /// # trait DurationExt { fn to_nanos(&self) -> u64 { 0 } }
    /// # impl DurationExt for Duration {}
    ///
    /// fn main() {
    ///     let stdin = io::stdin();
    ///     let ref mut stdin = stdin.lock();
    ///
    ///     // For each line in stdin
    ///     for line in stdin.lines() {
    ///         // Parse line as the number of iterations
    ///         let iters: u64 = line.unwrap().trim().parse().unwrap();
    ///
    ///         // Setup
    ///
    ///         // Benchmark
    ///         let start = Instant::now();
    ///         // Execute the routine "iters" times
    ///         for _ in 0..iters {
    ///             // Code to benchmark goes here
    ///         }
    ///         let elapsed = start.elapsed();
    ///
    ///         // Teardown
    ///
    ///         // Report elapsed time in nanoseconds to stdout
    ///         println!("{}", elapsed.to_nanos());
    ///     }
    /// }
    /// ```
    pub fn bench_program(&mut self, id: &str, program: Command) -> &mut Criterion {
        self.bench(id, Benchmark::new_external(id, program))
    }

    /// Benchmarks an external program under various inputs
    ///
    /// This is a convenience method to execute several related benchmarks. Each benchmark will
    /// receive the id: `${id}/${input}`.
    pub fn bench_program_over_inputs<I, F>(
        &mut self,
        id: &str,
        mut program: F,
        inputs: I,
    ) -> &mut Criterion
    where
        F: FnMut() -> Command + 'static,
        I: IntoIterator,
        I::Item: fmt::Debug + 'static,
    {
        self.bench(
            id,
            ParameterizedBenchmark::new_external(
                id,
                move |i| {
                    let mut command = program();
                    command.arg(format!("{:?}", i));
                    command
                },
                inputs,
            ),
        )
    }

    /// Executes the given benchmark. Use this variant to execute benchmarks
    /// with complex configuration.
    ///
    /// ```rust,no_run
    /// use self::criterion::{Bencher, Criterion, Benchmark};
    ///
    /// fn routine(b: &mut Bencher) {
    ///     // Setup (construct data, allocate memory, etc)
    ///
    ///     b.iter(|| {
    ///         // Code to benchmark goes here
    ///     })
    ///
    ///     // Teardown (free resources)
    /// }
    ///
    /// Criterion::default()
    ///     .bench("routine", Benchmark::new("routine", routine)
    ///         .sample_size(50));
    /// ```
    pub fn bench<B: BenchmarkDefinition>(
        &mut self,
        group_id: &str,
        benchmark: B,
    ) -> &mut Criterion {
        benchmark.run(group_id, self);
        self
    }
}

mod plotting {
    #[derive(Debug, Clone, Copy)]
    pub enum Plotting {
        Disabled,
        Enabled,
        NotAvailable,
    }

    impl Plotting {
        pub fn is_enabled(&self) -> bool {
            match *self {
                Plotting::Enabled => true,
                _ => false,
            }
        }
    }
}

trait DurationExt {
    fn to_nanos(&self) -> u64;
}

const NANOS_PER_SEC: u64 = 1_000_000_000;

impl DurationExt for Duration {
    fn to_nanos(&self) -> u64 {
        self.as_secs() * NANOS_PER_SEC + u64::from(self.subsec_nanos())
    }
}

#[derive(Clone, Copy, PartialEq, Deserialize, Serialize, Debug)]
struct ConfidenceInterval {
    confidence_level: f64,
    lower_bound: f64,
    upper_bound: f64,
}

#[derive(Clone, Copy, PartialEq, Deserialize, Serialize, Debug)]
struct Estimate {
    /// The confidence interval for this estimate
    confidence_interval: ConfidenceInterval,
    ///
    point_estimate: f64,
    /// The standard error of this estimate
    standard_error: f64,
}

impl Estimate {
    fn new(distributions: &Distributions, points: &BTreeMap<Statistic, f64>, cl: f64) -> Estimates {
        distributions
            .iter()
            .map(|(&statistic, distribution)| {
                let point_estimate = points[&statistic];
                let (lb, ub) = distribution.confidence_interval(cl);

                (
                    statistic,
                    Estimate {
                        confidence_interval: ConfidenceInterval {
                            confidence_level: cl,
                            lower_bound: lb,
                            upper_bound: ub,
                        },
                        point_estimate: point_estimate,
                        standard_error: distribution.std_dev(None),
                    },
                )
            })
            .collect()
    }
}

/// Enum representing different ways of measuring the throughput of benchmarked code.
/// If the throughput setting is configured for a benchmark then the estimated throughput will
/// be reported as well as the time per iteration.
#[derive(Debug, Clone)]
pub enum Throughput {
    /// Measure throughput in terms of bytes/second. The value should be the number of bytes
    /// processed by one iteration of the benchmarked code. Typically, this would be the length of
    /// an input string or `&[u8]`.
    Bytes(u32),

    /// Measure throughput in terms of elements/second. The value should be the number of elements
    /// processed by one iteration of the benchmarked code. Typically, this would be the size of a
    /// collection, but could also be the number of lines of input text or the number of values to
    /// parse.
    Elements(u32),
}

/// Axis Scaling Type
#[derive(Debug, Clone, Copy)]
pub enum AxisScale {
    /// Axes scale linearly
    Linear,

    /// Axes scale logarithmically
    Logarithmic,
}

/// Contains the configuration options for the plots generated by a particular benchmark
/// or benchmark group.
///
/// ```rust
/// use self::criterion::{Bencher, Criterion, Benchmark, PlotConfiguration, AxisScale};
///
/// let plot_config = PlotConfiguration::default()
///     .summary_scale(AxisScale::Logarithmic);
///
/// Benchmark::new("test", |b| b.iter(|| 10))
///     .plot_config(plot_config);
/// ```
#[derive(Debug, Clone)]
pub struct PlotConfiguration {
    summary_scale: AxisScale,
}

impl Default for PlotConfiguration {
    fn default() -> PlotConfiguration {
        PlotConfiguration {
            summary_scale: AxisScale::Linear,
        }
    }
}

impl PlotConfiguration {
    /// Set the axis scale (linear or logarithmic) for the summary plots. Typically, you would
    /// set this to logarithmic if benchmarking over a range of inputs which scale exponentially.
    /// Defaults to linear.
    pub fn summary_scale(mut self, new_scale: AxisScale) -> PlotConfiguration {
        self.summary_scale = new_scale;
        self
    }
}