1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
//! A frontend for building Cretonne IR from other languages.
use cretonne_codegen::cursor::{Cursor, FuncCursor};
use cretonne_codegen::entity::{EntityMap, EntityRef, EntitySet};
use cretonne_codegen::ir;
use cretonne_codegen::ir::function::DisplayFunction;
use cretonne_codegen::ir::{DataFlowGraph, Ebb, ExtFuncData, FuncRef, Function, GlobalVar,
                           GlobalVarData, Heap, HeapData, Inst, InstBuilderBase, InstructionData,
                           JumpTable, JumpTableData, SigRef, Signature, StackSlot, StackSlotData,
                           Type, Value};
use cretonne_codegen::isa::TargetIsa;
use cretonne_codegen::packed_option::PackedOption;
use ssa::{Block, SSABuilder, SideEffects};

/// Structure used for translating a series of functions into Cretonne IR.
///
/// In order to reduce memory reallocations when compiling multiple functions,
/// `FunctionBuilderContext` holds various data structures which are cleared between
/// functions, rather than dropped, preserving the underlying allocations.
///
/// The `Variable` parameter can be any index-like type that can be made to
/// implement `EntityRef`. For frontends that don't have an obvious type to
/// use here, `variable::Variable` can be used.
pub struct FunctionBuilderContext<Variable>
where
    Variable: EntityRef,
{
    ssa: SSABuilder<Variable>,
    ebbs: EntityMap<Ebb, EbbData>,
    types: EntityMap<Variable, Type>,
}

/// Temporary object used to build a single Cretonne IR `Function`.
pub struct FunctionBuilder<'a, Variable: 'a>
where
    Variable: EntityRef,
{
    /// The function currently being built.
    /// This field is public so the function can be re-borrowed.
    pub func: &'a mut Function,

    /// Source location to assign to all new instructions.
    srcloc: ir::SourceLoc,

    func_ctx: &'a mut FunctionBuilderContext<Variable>,
    position: Position,
}

#[derive(Clone, Default)]
struct EbbData {
    filled: bool,
    pristine: bool,
    user_param_count: usize,
}

struct Position {
    ebb: PackedOption<Ebb>,
    basic_block: PackedOption<Block>,
}

impl Position {
    fn at(ebb: Ebb, basic_block: Block) -> Self {
        Self {
            ebb: PackedOption::from(ebb),
            basic_block: PackedOption::from(basic_block),
        }
    }

    fn default() -> Self {
        Self {
            ebb: PackedOption::default(),
            basic_block: PackedOption::default(),
        }
    }

    fn is_default(&self) -> bool {
        self.ebb.is_none() && self.basic_block.is_none()
    }
}

impl<Variable> FunctionBuilderContext<Variable>
where
    Variable: EntityRef,
{
    /// Creates a FunctionBuilderContext structure. The structure is automatically cleared after
    /// each [`FunctionBuilder`](struct.FunctionBuilder.html) completes translating a function.
    pub fn new() -> Self {
        Self {
            ssa: SSABuilder::new(),
            ebbs: EntityMap::new(),
            types: EntityMap::new(),
        }
    }

    fn clear(&mut self) {
        self.ssa.clear();
        self.ebbs.clear();
        self.types.clear();
    }

    fn is_empty(&self) -> bool {
        self.ssa.is_empty() && self.ebbs.is_empty() && self.types.is_empty()
    }
}

/// Implementation of the [`InstBuilder`](../codegen/ir/builder/trait.InstBuilder.html) that has
/// one convenience method per Cretonne IR instruction.
pub struct FuncInstBuilder<'short, 'long: 'short, Variable: 'long>
where
    Variable: EntityRef,
{
    builder: &'short mut FunctionBuilder<'long, Variable>,
    ebb: Ebb,
}

impl<'short, 'long, Variable> FuncInstBuilder<'short, 'long, Variable>
where
    Variable: EntityRef,
{
    fn new<'s, 'l>(
        builder: &'s mut FunctionBuilder<'l, Variable>,
        ebb: Ebb,
    ) -> FuncInstBuilder<'s, 'l, Variable> {
        FuncInstBuilder { builder, ebb }
    }
}

impl<'short, 'long, Variable> InstBuilderBase<'short> for FuncInstBuilder<'short, 'long, Variable>
where
    Variable: EntityRef,
{
    fn data_flow_graph(&self) -> &DataFlowGraph {
        &self.builder.func.dfg
    }

    fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph {
        &mut self.builder.func.dfg
    }

    // This implementation is richer than `InsertBuilder` because we use the data of the
    // instruction being inserted to add related info to the DFG and the SSA building system,
    // and perform debug sanity checks.
    fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'short mut DataFlowGraph) {
// We only insert the Ebb in the layout when an instruction is added to it
        self.builder.ensure_inserted_ebb();

        let inst = self.builder.func.dfg.make_inst(data.clone());
        self.builder.func.dfg.make_inst_results(inst, ctrl_typevar);
        self.builder.func.layout.append_inst(inst, self.ebb);
        if !self.builder.srcloc.is_default() {
            self.builder.func.srclocs[inst] = self.builder.srcloc;
        }

        if data.opcode().is_branch() {
            match data.branch_destination() {
                Some(dest_ebb) => {
// If the user has supplied jump arguments we must adapt the arguments of
// the destination ebb
                    self.builder.declare_successor(dest_ebb, inst);
                }
                None => {
// branch_destination() doesn't detect jump_tables
// If jump table we declare all entries successor
                    if let InstructionData::BranchTable { table, .. } = data {
// Unlike all other jumps/branches, jump tables are
// capable of having the same successor appear
// multiple times, so we must deduplicate.
                        let mut unique = EntitySet::<Ebb>::new();
                        for dest_ebb in self.builder
                            .func
                            .jump_tables
                            .get(table)
                            .expect("you are referencing an undeclared jump table")
                            .entries()
                            .map(|(_, ebb)| ebb)
                            .filter(|dest_ebb| unique.insert(*dest_ebb))
                        {
                            self.builder.func_ctx.ssa.declare_ebb_predecessor(
                                dest_ebb,
                                self.builder.position.basic_block.unwrap(),
                                inst,
                            )
                        }
                    }
                }
            }
        }
        if data.opcode().is_terminator() {
            self.builder.fill_current_block()
        } else if data.opcode().is_branch() {
            self.builder.move_to_next_basic_block()
        }
        (inst, &mut self.builder.func.dfg)
    }
}

/// This module allows you to create a function in Cretonne IR in a straightforward way, hiding
/// all the complexity of its internal representation.
///
/// The module is parametrized by one type which is the representation of variables in your
/// origin language. It offers a way to conveniently append instruction to your program flow.
/// You are responsible to split your instruction flow into extended blocks (declared with
/// `create_ebb`) whose properties are:
///
/// - branch and jump instructions can only point at the top of extended blocks;
/// - the last instruction of each block is a terminator instruction which has no natural successor,
///   and those instructions can only appear at the end of extended blocks.
///
/// The parameters of Cretonne IR instructions are Cretonne IR values, which can only be created
/// as results of other Cretonne IR instructions. To be able to create variables redefined multiple
/// times in your program, use the `def_var` and `use_var` command, that will maintain the
/// correspondence between your variables and Cretonne IR SSA values.
///
/// The first block for which you call `switch_to_block` will be assumed to be the beginning of
/// the function.
///
/// At creation, a `FunctionBuilder` instance borrows an already allocated `Function` which it
/// modifies with the information stored in the mutable borrowed
/// [`FunctionBuilderContext`](struct.FunctionBuilderContext.html). The function passed in
/// argument should be newly created with
/// [`Function::with_name_signature()`](../function/struct.Function.html), whereas the
/// `FunctionBuilderContext` can be kept as is between two function translations.
///
/// # Errors
///
/// The functions below will panic in debug mode whenever you try to modify the Cretonne IR
/// function in a way that violate the coherence of the code. For instance: switching to a new
/// `Ebb` when you haven't filled the current one with a terminator instruction, inserting a
/// return instruction with arguments that don't match the function's signature.
impl<'a, Variable> FunctionBuilder<'a, Variable>
where
    Variable: EntityRef,
{
    /// Creates a new FunctionBuilder structure that will operate on a `Function` using a
    /// `FunctionBuilderContext`.
    pub fn new(
        func: &'a mut Function,
        func_ctx: &'a mut FunctionBuilderContext<Variable>,
    ) -> FunctionBuilder<'a, Variable> {
        debug_assert!(func_ctx.is_empty());
        FunctionBuilder {
            func,
            srcloc: Default::default(),
            func_ctx,
            position: Position::default(),
        }
    }

    /// Set the source location that should be assigned to all new instructions.
    pub fn set_srcloc(&mut self, srcloc: ir::SourceLoc) {
        self.srcloc = srcloc;
    }

    /// Creates a new `Ebb` and returns its reference.
    pub fn create_ebb(&mut self) -> Ebb {
        let ebb = self.func.dfg.make_ebb();
        self.func_ctx.ssa.declare_ebb_header_block(ebb);
        self.func_ctx.ebbs[ebb] = EbbData {
            filled: false,
            pristine: true,
            user_param_count: 0,
        };
        ebb
    }

    /// After the call to this function, new instructions will be inserted into the designated
    /// block, in the order they are declared. You must declare the types of the Ebb arguments
    /// you will use here.
    ///
    /// When inserting the terminator instruction (which doesn't have a fallthrough to its immediate
    /// successor), the block will be declared filled and it will not be possible to append
    /// instructions to it.
    pub fn switch_to_block(&mut self, ebb: Ebb) {
        // First we check that the previous block has been filled.
        debug_assert!(
            self.position.is_default() || self.is_unreachable() || self.is_pristine() ||
                self.is_filled(),
            "you have to fill your block before switching"
        );
        // We cannot switch to a filled block
        debug_assert!(
            !self.func_ctx.ebbs[ebb].filled,
            "you cannot switch to a block which is already filled"
        );

        let basic_block = self.func_ctx.ssa.header_block(ebb);
        // Then we change the cursor position.
        self.position = Position::at(ebb, basic_block);
    }

    /// Declares that all the predecessors of this block are known.
    ///
    /// Function to call with `ebb` as soon as the last branch instruction to `ebb` has been
    /// created. Forgetting to call this method on every block will cause inconsistencies in the
    /// produced functions.
    pub fn seal_block(&mut self, ebb: Ebb) {
        let side_effects = self.func_ctx.ssa.seal_ebb_header_block(ebb, self.func);
        self.handle_ssa_side_effects(side_effects);
    }

    /// Effectively calls seal_block on all blocks in the function.
    ///
    /// It's more efficient to seal `Ebb`s as soon as possible, during
    /// translation, but for frontends where this is impractical to do, this
    /// function can be used at the end of translating all blocks to ensure
    /// that everything is sealed.
    pub fn seal_all_blocks(&mut self) {
        let side_effects = self.func_ctx.ssa.seal_all_ebb_header_blocks(self.func);
        self.handle_ssa_side_effects(side_effects);
    }

    /// In order to use a variable in a `use_var`, you need to declare its type with this method.
    pub fn declare_var(&mut self, var: Variable, ty: Type) {
        self.func_ctx.types[var] = ty;
    }

    /// Returns the Cretonne IR value corresponding to the utilization at the current program
    /// position of a previously defined user variable.
    pub fn use_var(&mut self, var: Variable) -> Value {
        let ty = *self.func_ctx.types.get(var).expect(
            "this variable is used but its type has not been declared",
        );
        let (val, side_effects) = self.func_ctx.ssa.use_var(
            self.func,
            var,
            ty,
            self.position.basic_block.unwrap(),
        );
        self.handle_ssa_side_effects(side_effects);
        val
    }

    /// Register a new definition of a user variable. Panics if the type of the value is not the
    /// same as the type registered for the variable.
    pub fn def_var(&mut self, var: Variable, val: Value) {
        self.func_ctx.ssa.def_var(
            var,
            val,
            self.position.basic_block.unwrap(),
        );
    }

    /// Creates a jump table in the function, to be used by `br_table` instructions.
    pub fn create_jump_table(&mut self, data: JumpTableData) -> JumpTable {
        self.func.create_jump_table(data)
    }

    /// Inserts an entry in a previously declared jump table.
    pub fn insert_jump_table_entry(&mut self, jt: JumpTable, index: usize, ebb: Ebb) {
        self.func.insert_jump_table_entry(jt, index, ebb)
    }

    /// Creates a stack slot in the function, to be used by `stack_load`, `stack_store` and
    /// `stack_addr` instructions.
    pub fn create_stack_slot(&mut self, data: StackSlotData) -> StackSlot {
        self.func.create_stack_slot(data)
    }

    /// Adds a signature which can later be used to declare an external function import.
    pub fn import_signature(&mut self, signature: Signature) -> SigRef {
        self.func.import_signature(signature)
    }

    /// Declare an external function import.
    pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef {
        self.func.import_function(data)
    }

    /// Declares a global variable accessible to the function.
    pub fn create_global_var(&mut self, data: GlobalVarData) -> GlobalVar {
        self.func.create_global_var(data)
    }

    /// Declares a heap accessible to the function.
    pub fn create_heap(&mut self, data: HeapData) -> Heap {
        self.func.create_heap(data)
    }

    /// Returns an object with the [`InstBuilder`](../codegen/ir/builder/trait.InstBuilder.html)
    /// trait that allows to conveniently append an instruction to the current `Ebb` being built.
    pub fn ins<'short>(&'short mut self) -> FuncInstBuilder<'short, 'a, Variable> {
        let ebb = self.position.ebb.unwrap();
        FuncInstBuilder::new(self, ebb)
    }

    /// Make sure that the current EBB is inserted in the layout.
    pub fn ensure_inserted_ebb(&mut self) {
        let ebb = self.position.ebb.unwrap();
        if self.func_ctx.ebbs[ebb].pristine {
            if !self.func.layout.is_ebb_inserted(ebb) {
                self.func.layout.append_ebb(ebb);
            }
            self.func_ctx.ebbs[ebb].pristine = false;
        } else {
            debug_assert!(
                !self.func_ctx.ebbs[ebb].filled,
                "you cannot add an instruction to a block already filled"
            );
        }
    }

    /// Returns a `FuncCursor` pointed at the current position ready for inserting instructions.
    ///
    /// This can be used to insert SSA code that doesn't need to access locals and that doesn't
    /// need to know about `FunctionBuilder` at all.
    pub fn cursor(&mut self) -> FuncCursor {
        self.ensure_inserted_ebb();
        FuncCursor::new(self.func)
            .with_srcloc(self.srcloc)
            .at_bottom(self.position.ebb.unwrap())
    }

    /// Append parameters to the given `Ebb` corresponding to the function
    /// parameters. This can be used to set up the ebb parameters for the
    /// entry block.
    pub fn append_ebb_params_for_function_params(&mut self, ebb: Ebb) {
        // These parameters count as "user" parameters here because they aren't
        // inserted by the SSABuilder.
        let user_param_count = &mut self.func_ctx.ebbs[ebb].user_param_count;
        for argtyp in &self.func.signature.params {
            *user_param_count += 1;
            self.func.dfg.append_ebb_param(ebb, argtyp.value_type);
        }
    }

    /// Append parameters to the given `Ebb` corresponding to the function
    /// return values. This can be used to set up the ebb parameters for a
    /// function exit block.
    pub fn append_ebb_params_for_function_returns(&mut self, ebb: Ebb) {
        // These parameters count as "user" parameters here because they aren't
        // inserted by the SSABuilder.
        let user_param_count = &mut self.func_ctx.ebbs[ebb].user_param_count;
        for argtyp in &self.func.signature.returns {
            *user_param_count += 1;
            self.func.dfg.append_ebb_param(ebb, argtyp.value_type);
        }
    }

    /// Declare that translation of the current function is complete. This
    /// resets the state of the `FunctionBuilder` in preparation to be used
    /// for another function.
    pub fn finalize(&mut self) {
        // Check that all the `Ebb`s are filled and sealed.
        debug_assert!(
            self.func_ctx.ebbs.iter().all(|(ebb, ebb_data)| {
                ebb_data.pristine || self.func_ctx.ssa.is_sealed(ebb)
            }),
            "all blocks should be sealed before dropping a FunctionBuilder"
        );
        debug_assert!(
            self.func_ctx.ebbs.values().all(|ebb_data| {
                ebb_data.pristine || ebb_data.filled
            }),
            "all blocks should be filled before dropping a FunctionBuilder"
        );

        // Clear the state (but preserve the allocated buffers) in preparation
        // for translation another function.
        self.func_ctx.clear();

        // Reset srcloc and position to initial states.
        self.srcloc = Default::default();
        self.position = Position::default();
    }
}

/// All the functions documented in the previous block are write-only and help you build a valid
/// Cretonne IR functions via multiple debug asserts. However, you might need to improve the
/// performance of your translation perform more complex transformations to your Cretonne IR
/// function. The functions below help you inspect the function you're creating and modify it
/// in ways that can be unsafe if used incorrectly.
impl<'a, Variable> FunctionBuilder<'a, Variable>
where
    Variable: EntityRef,
{
    /// Retrieves all the parameters for an `Ebb` currently inferred from the jump instructions
    /// inserted that target it and the SSA construction.
    pub fn ebb_params(&self, ebb: Ebb) -> &[Value] {
        self.func.dfg.ebb_params(ebb)
    }

    /// Retrieves the signature with reference `sigref` previously added with `import_signature`.
    pub fn signature(&self, sigref: SigRef) -> Option<&Signature> {
        self.func.dfg.signatures.get(sigref)
    }

    /// Creates a parameter for a specific `Ebb` by appending it to the list of already existing
    /// parameters.
    ///
    /// **Note:** this function has to be called at the creation of the `Ebb` before adding
    /// instructions to it, otherwise this could interfere with SSA construction.
    pub fn append_ebb_param(&mut self, ebb: Ebb, ty: Type) -> Value {
        debug_assert!(self.func_ctx.ebbs[ebb].pristine);
        debug_assert_eq!(
            self.func_ctx.ebbs[ebb].user_param_count,
            self.func.dfg.num_ebb_params(ebb)
        );
        self.func_ctx.ebbs[ebb].user_param_count += 1;
        self.func.dfg.append_ebb_param(ebb, ty)
    }

    /// Returns the result values of an instruction.
    pub fn inst_results(&self, inst: Inst) -> &[Value] {
        self.func.dfg.inst_results(inst)
    }

    /// Changes the destination of a jump instruction after creation.
    ///
    /// **Note:** You are responsible for maintaining the coherence with the arguments of
    /// other jump instructions.
    pub fn change_jump_destination(&mut self, inst: Inst, new_dest: Ebb) {
        let old_dest = self.func.dfg[inst].branch_destination_mut().expect(
            "you want to change the jump destination of a non-jump instruction",
        );
        let pred = self.func_ctx.ssa.remove_ebb_predecessor(*old_dest, inst);
        *old_dest = new_dest;
        self.func_ctx.ssa.declare_ebb_predecessor(
            new_dest,
            pred,
            inst,
        );
    }

    /// Returns `true` if and only if the current `Ebb` is sealed and has no predecessors declared.
    ///
    /// The entry block of a function is never unreachable.
    pub fn is_unreachable(&self) -> bool {
        let is_entry = match self.func.layout.entry_block() {
            None => false,
            Some(entry) => self.position.ebb.unwrap() == entry,
        };
        !is_entry && self.func_ctx.ssa.is_sealed(self.position.ebb.unwrap()) &&
            self.func_ctx
                .ssa
                .predecessors(self.position.ebb.unwrap())
                .is_empty()
    }

    /// Returns `true` if and only if no instructions have been added since the last call to
    /// `switch_to_block`.
    pub fn is_pristine(&self) -> bool {
        self.func_ctx.ebbs[self.position.ebb.unwrap()].pristine
    }

    /// Returns `true` if and only if a terminator instruction has been inserted since the
    /// last call to `switch_to_block`.
    pub fn is_filled(&self) -> bool {
        self.func_ctx.ebbs[self.position.ebb.unwrap()].filled
    }

    /// Returns a displayable object for the function as it is.
    ///
    /// Useful for debug purposes. Use it with `None` for standard printing.
    // Clippy thinks the lifetime that follows is needless, but rustc needs it
    #[cfg_attr(feature = "cargo-clippy", allow(needless_lifetimes))]
    pub fn display<'b, I: Into<Option<&'b TargetIsa>>>(&'b self, isa: I) -> DisplayFunction {
        self.func.display(isa)
    }
}

// Helper functions
impl<'a, Variable> FunctionBuilder<'a, Variable>
where
    Variable: EntityRef,
{
    fn move_to_next_basic_block(&mut self) {
        self.position.basic_block = PackedOption::from(self.func_ctx.ssa.declare_ebb_body_block(
            self.position.basic_block.unwrap(),
        ));
    }

    fn fill_current_block(&mut self) {
        self.func_ctx.ebbs[self.position.ebb.unwrap()].filled = true;
    }

    fn declare_successor(&mut self, dest_ebb: Ebb, jump_inst: Inst) {
        self.func_ctx.ssa.declare_ebb_predecessor(
            dest_ebb,
            self.position.basic_block.unwrap(),
            jump_inst,
        );
    }

    fn handle_ssa_side_effects(&mut self, side_effects: SideEffects) {
        for split_ebb in side_effects.split_ebbs_created {
            self.func_ctx.ebbs[split_ebb].filled = true
        }
        for modified_ebb in side_effects.instructions_added_to_ebbs {
            self.func_ctx.ebbs[modified_ebb].pristine = false
        }
    }
}

#[cfg(test)]
mod tests {

    use Variable;
    use cretonne_codegen::entity::EntityRef;
    use cretonne_codegen::ir::types::*;
    use cretonne_codegen::ir::{AbiParam, CallConv, ExternalName, Function, InstBuilder, Signature};
    use cretonne_codegen::settings;
    use cretonne_codegen::verifier::verify_function;
    use frontend::{FunctionBuilder, FunctionBuilderContext};

    fn sample_function(lazy_seal: bool) {
        let mut sig = Signature::new(CallConv::SystemV);
        sig.returns.push(AbiParam::new(I32));
        sig.params.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::<Variable>::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::<Variable>::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_ebb();
            let block1 = builder.create_ebb();
            let block2 = builder.create_ebb();
            let x = Variable::new(0);
            let y = Variable::new(1);
            let z = Variable::new(2);
            builder.declare_var(x, I32);
            builder.declare_var(y, I32);
            builder.declare_var(z, I32);
            builder.append_ebb_params_for_function_params(block0);

            builder.switch_to_block(block0);
            if !lazy_seal {
                builder.seal_block(block0);
            }
            {
                let tmp = builder.ebb_params(block0)[0]; // the first function parameter
                builder.def_var(x, tmp);
            }
            {
                let tmp = builder.ins().iconst(I32, 2);
                builder.def_var(y, tmp);
            }
            {
                let arg1 = builder.use_var(x);
                let arg2 = builder.use_var(y);
                let tmp = builder.ins().iadd(arg1, arg2);
                builder.def_var(z, tmp);
            }
            builder.ins().jump(block1, &[]);

            builder.switch_to_block(block1);
            {
                let arg1 = builder.use_var(y);
                let arg2 = builder.use_var(z);
                let tmp = builder.ins().iadd(arg1, arg2);
                builder.def_var(z, tmp);
            }
            {
                let arg = builder.use_var(y);
                builder.ins().brnz(arg, block2, &[]);
            }
            {
                let arg1 = builder.use_var(z);
                let arg2 = builder.use_var(x);
                let tmp = builder.ins().isub(arg1, arg2);
                builder.def_var(z, tmp);
            }
            {
                let arg = builder.use_var(y);
                builder.ins().return_(&[arg]);
            }

            builder.switch_to_block(block2);
            if !lazy_seal {
                builder.seal_block(block2);
            }

            {
                let arg1 = builder.use_var(y);
                let arg2 = builder.use_var(x);
                let tmp = builder.ins().isub(arg1, arg2);
                builder.def_var(y, tmp);
            }
            builder.ins().jump(block1, &[]);
            if !lazy_seal {
                builder.seal_block(block1);
            }

            if lazy_seal {
                builder.seal_all_blocks();
            }

            builder.finalize();
        }

        let flags = settings::Flags::new(&settings::builder());
        let res = verify_function(&func, &flags);
        // println!("{}", func.display(None));
        match res {
            Ok(_) => {}
            Err(err) => panic!("{}{}", func.display(None), err),
        }
    }

    #[test]
    fn sample() {
        sample_function(false)
    }

    #[test]
    fn sample_with_lazy_seal() {
        sample_function(true)
    }
}