1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
//! Instruction Set Architectures.
//!
//! The `isa` module provides a `TargetIsa` trait which provides the behavior specialization needed
//! by the ISA-independent code generator. The sub-modules of this module provide definitions for
//! the instruction sets that Cretonne can target. Each sub-module has it's own implementation of
//! `TargetIsa`.
//!
//! # Constructing a `TargetIsa` instance
//!
//! The target ISA is built from the following information:
//!
//! - The name of the target ISA as a string. Cretonne is a cross-compiler, so the ISA to target
//!   can be selected dynamically. Individual ISAs can be left out when Cretonne is compiled, so a
//!   string is used to identify the proper sub-module.
//! - Values for settings that apply to all ISAs. This is represented by a `settings::Flags`
//!   instance.
//! - Values for ISA-specific settings.
//!
//! The `isa::lookup()` function is the main entry point which returns an `isa::Builder`
//! appropriate for the requested ISA:
//!
//! ```
//! use cretonne_codegen::settings::{self, Configurable};
//! use cretonne_codegen::isa;
//!
//! let shared_builder = settings::builder();
//! let shared_flags = settings::Flags::new(shared_builder);
//!
//! match isa::lookup("riscv") {
//!     Err(_) => {
//!         // The RISC-V target ISA is not available.
//!     }
//!     Ok(mut isa_builder) => {
//!         isa_builder.set("supports_m", "on");
//!         let isa = isa_builder.finish(shared_flags);
//!     }
//! }
//! ```
//!
//! The configured target ISA trait object is a `Box<TargetIsa>` which can be used for multiple
//! concurrent function compilations.

pub use isa::constraints::{BranchRange, ConstraintKind, OperandConstraint, RecipeConstraints};
pub use isa::encoding::{EncInfo, Encoding};
pub use isa::registers::{regs_overlap, RegClass, RegClassIndex, RegInfo, RegUnit};
pub use isa::stack::{StackBase, StackBaseMask, StackRef};

use binemit;
use flowgraph;
use ir;
use isa::enc_tables::Encodings;
use regalloc;
use result;
use settings;
use settings::CallConv;
use std::boxed::Box;
use std::fmt;
use timing;

#[cfg(build_riscv)]
mod riscv;

#[cfg(build_x86)]
mod x86;

#[cfg(build_arm32)]
mod arm32;

#[cfg(build_arm64)]
mod arm64;

mod constraints;
mod enc_tables;
mod encoding;
pub mod registers;
mod stack;

/// Returns a builder that can create a corresponding `TargetIsa`
/// or `Err(LookupError::Unsupported)` if not enabled.
macro_rules! isa_builder {
    ($module:ident, $name:ident) => {{
        #[cfg($name)]
        fn $name() -> Result<Builder, LookupError> {
            Ok($module::isa_builder())
        };
        #[cfg(not($name))]
        fn $name() -> Result<Builder, LookupError> {
            Err(LookupError::Unsupported)
        }
        $name()
    }};
}

/// Look for a supported ISA with the given `name`.
/// Return a builder that can create a corresponding `TargetIsa`.
pub fn lookup(name: &str) -> Result<Builder, LookupError> {
    match name {
        "riscv" => isa_builder!(riscv, build_riscv),
        "x86" => isa_builder!(x86, build_x86),
        "arm32" => isa_builder!(arm32, build_arm32),
        "arm64" => isa_builder!(arm64, build_arm64),
        _ => Err(LookupError::Unknown),
    }
}

/// Describes reason for target lookup failure
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum LookupError {
    /// Unknown Target
    Unknown,

    /// Target known but not built and thus not supported
    Unsupported,
}

/// Builder for a `TargetIsa`.
/// Modify the ISA-specific settings before creating the `TargetIsa` trait object with `finish`.
pub struct Builder {
    setup: settings::Builder,
    constructor: fn(settings::Flags, settings::Builder) -> Box<TargetIsa>,
}

impl Builder {
    /// Combine the ISA-specific settings with the provided ISA-independent settings and allocate a
    /// fully configured `TargetIsa` trait object.
    pub fn finish(self, shared_flags: settings::Flags) -> Box<TargetIsa> {
        (self.constructor)(shared_flags, self.setup)
    }
}

impl settings::Configurable for Builder {
    fn set(&mut self, name: &str, value: &str) -> settings::Result<()> {
        self.setup.set(name, value)
    }

    fn enable(&mut self, name: &str) -> settings::Result<()> {
        self.setup.enable(name)
    }
}

/// After determining that an instruction doesn't have an encoding, how should we proceed to
/// legalize it?
///
/// The `Encodings` iterator returns a legalization function to call.
pub type Legalize = fn(ir::Inst,
                       &mut ir::Function,
                       &mut flowgraph::ControlFlowGraph,
                       &TargetIsa)
                       -> bool;

/// Methods that are specialized to a target ISA. Implies a Display trait that shows the
/// shared flags, as well as any isa-specific flags.
pub trait TargetIsa: fmt::Display {
    /// Get the name of this ISA.
    fn name(&self) -> &'static str;

    /// Get the ISA-independent flags that were used to make this trait object.
    fn flags(&self) -> &settings::Flags;

    /// Does the CPU implement scalar comparisons using a CPU flags register?
    fn uses_cpu_flags(&self) -> bool {
        false
    }

    /// Get a data structure describing the registers in this ISA.
    fn register_info(&self) -> RegInfo;

    /// Returns an iterartor over legal encodings for the instruction.
    fn legal_encodings<'a>(
        &'a self,
        func: &'a ir::Function,
        inst: &'a ir::InstructionData,
        ctrl_typevar: ir::Type,
    ) -> Encodings<'a>;

    /// Encode an instruction after determining it is legal.
    ///
    /// If `inst` can legally be encoded in this ISA, produce the corresponding `Encoding` object.
    /// Otherwise, return `Legalize` action.
    ///
    /// This is also the main entry point for determining if an instruction is legal.
    fn encode(
        &self,
        func: &ir::Function,
        inst: &ir::InstructionData,
        ctrl_typevar: ir::Type,
    ) -> Result<Encoding, Legalize> {
        let mut iter = self.legal_encodings(func, inst, ctrl_typevar);
        iter.next().ok_or_else(|| iter.legalize())
    }

    /// Get a data structure describing the instruction encodings in this ISA.
    fn encoding_info(&self) -> EncInfo;

    /// Legalize a function signature.
    ///
    /// This is used to legalize both the signature of the function being compiled and any called
    /// functions. The signature should be modified by adding `ArgumentLoc` annotations to all
    /// arguments and return values.
    ///
    /// Arguments with types that are not supported by the ABI can be expanded into multiple
    /// arguments:
    ///
    /// - Integer types that are too large to fit in a register can be broken into multiple
    ///   arguments of a smaller integer type.
    /// - Floating point types can be bit-cast to an integer type of the same size, and possible
    ///   broken into smaller integer types.
    /// - Vector types can be bit-cast and broken down into smaller vectors or scalars.
    ///
    /// The legalizer will adapt argument and return values as necessary at all ABI boundaries.
    ///
    /// When this function is called to legalize the signature of the function currently begin
    /// compiler, `current` is true. The legalized signature can then also contain special purpose
    /// arguments and return values such as:
    ///
    /// - A `link` argument representing the link registers on RISC architectures that don't push
    ///   the return address on the stack.
    /// - A `link` return value which will receive the value that was passed to the `link`
    ///   argument.
    /// - An `sret` argument can be added if one wasn't present already. This is necessary if the
    ///   signature returns more values than registers are available for returning values.
    /// - An `sret` return value can be added if the ABI requires a function to return its `sret`
    ///   argument in a register.
    ///
    /// Arguments and return values for the caller's frame pointer and other callee-saved registers
    /// should not be added by this function. These arguments are not added until after register
    /// allocation.
    fn legalize_signature(&self, sig: &mut ir::Signature, current: bool);

    /// Get the register class that should be used to represent an ABI argument or return value of
    /// type `ty`. This should be the top-level register class that contains the argument
    /// registers.
    ///
    /// This function can assume that it will only be asked to provide register classes for types
    /// that `legalize_signature()` produces in `ArgumentLoc::Reg` entries.
    fn regclass_for_abi_type(&self, ty: ir::Type) -> RegClass;

    /// Get the set of allocatable registers that can be used when compiling `func`.
    ///
    /// This set excludes reserved registers like the stack pointer and other special-purpose
    /// registers.
    fn allocatable_registers(&self, func: &ir::Function) -> regalloc::RegisterSet;

    /// Compute the stack layout and insert prologue and epilogue code into `func`.
    ///
    /// Return an error if the stack frame is too large.
    fn prologue_epilogue(&self, func: &mut ir::Function) -> result::CtonResult {
        let _tt = timing::prologue_epilogue();
        // This default implementation is unlikely to be good enough.
        use ir::stackslot::{StackOffset, StackSize};
        use stack_layout::layout_stack;

        let word_size = if self.flags().is_64bit() { 8 } else { 4 };

        // Account for the SpiderMonkey standard prologue pushes.
        if func.signature.call_conv == CallConv::Baldrdash {
            let bytes = StackSize::from(self.flags().baldrdash_prologue_words()) * word_size;
            let mut ss = ir::StackSlotData::new(ir::StackSlotKind::IncomingArg, bytes);
            ss.offset = Some(-(bytes as StackOffset));
            func.stack_slots.push(ss);
        }

        layout_stack(&mut func.stack_slots, word_size)?;
        Ok(())
    }

    /// Emit binary machine code for a single instruction into the `sink` trait object.
    ///
    /// Note that this will call `put*` methods on the trait object via its vtable which is not the
    /// fastest way of emitting code.
    fn emit_inst(
        &self,
        func: &ir::Function,
        inst: ir::Inst,
        divert: &mut regalloc::RegDiversions,
        sink: &mut binemit::CodeSink,
    );

    /// Emit a whole function into memory.
    ///
    /// This is more performant than calling `emit_inst` for each instruction.
    fn emit_function(&self, func: &ir::Function, sink: &mut binemit::MemoryCodeSink);
}