1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
//! Cretonne compilation context and main entry point.
//!
//! When compiling many small functions, it is important to avoid repeatedly allocating and
//! deallocating the data structures needed for compilation. The `Context` struct is used to hold
//! on to memory allocations between function compilations.
//!
//! The context does not hold a `TargetIsa` instance which has to be provided as an argument
//! instead. This is because an ISA instance is immutable and can be used by multiple compilation
//! contexts concurrently. Typically, you would have one context per compilation thread and only a
//! single ISA instance.

use binemit::{relax_branches, shrink_instructions, CodeOffset, MemoryCodeSink, RelocSink, TrapSink};
use dce::do_dce;
use dominator_tree::DominatorTree;
use flowgraph::ControlFlowGraph;
use ir::Function;
use isa::TargetIsa;
use legalize_function;
use licm::do_licm;
use loop_analysis::LoopAnalysis;
use postopt::do_postopt;
use preopt::do_preopt;
use regalloc;
use result::{CtonError, CtonResult};
use settings::{FlagsOrIsa, OptLevel};
use std::vec::Vec;
use simple_gvn::do_simple_gvn;
use timing;
use unreachable_code::eliminate_unreachable_code;
use verifier;

/// Persistent data structures and compilation pipeline.
pub struct Context {
    /// The function we're compiling.
    pub func: Function,

    /// The control flow graph of `func`.
    pub cfg: ControlFlowGraph,

    /// Dominator tree for `func`.
    pub domtree: DominatorTree,

    /// Register allocation context.
    pub regalloc: regalloc::Context,

    /// Loop analysis of `func`.
    pub loop_analysis: LoopAnalysis,
}

impl Context {
    /// Allocate a new compilation context.
    ///
    /// The returned instance should be reused for compiling multiple functions in order to avoid
    /// needless allocator thrashing.
    pub fn new() -> Self {
        Self::for_function(Function::new())
    }

    /// Allocate a new compilation context with an existing Function.
    ///
    /// The returned instance should be reused for compiling multiple functions in order to avoid
    /// needless allocator thrashing.
    pub fn for_function(func: Function) -> Self {
        Self {
            func,
            cfg: ControlFlowGraph::new(),
            domtree: DominatorTree::new(),
            regalloc: regalloc::Context::new(),
            loop_analysis: LoopAnalysis::new(),
        }
    }

    /// Clear all data structures in this context.
    pub fn clear(&mut self) {
        self.func.clear();
        self.cfg.clear();
        self.domtree.clear();
        self.regalloc.clear();
        self.loop_analysis.clear();
    }

    /// Compile the function, and emit machine code into a `Vec<u8>`.
    ///
    /// Run the function through all the passes necessary to generate code for the target ISA
    /// represented by `isa`, as well as the final step of emitting machine code into a
    /// `Vec<u8>`. The machine code is not relocated. Instead, any relocations are emitted
    /// into `relocs`.
    ///
    /// This function calls `compile` and `emit_to_memory`, taking care to resize `mem` as
    /// needed, so it provides a safe interface.
    pub fn compile_and_emit(
        &mut self,
        isa: &TargetIsa,
        mem: &mut Vec<u8>,
        relocs: &mut RelocSink,
        traps: &mut TrapSink,
    ) -> CtonResult {
        let code_size = self.compile(isa)?;
        let old_len = mem.len();
        mem.resize(old_len + code_size as usize, 0);
        unsafe {
            self.emit_to_memory(
                isa,
                mem.as_mut_ptr().offset(old_len as isize),
                relocs,
                traps,
            )
        };
        Ok(())
    }

    /// Compile the function.
    ///
    /// Run the function through all the passes necessary to generate code for the target ISA
    /// represented by `isa`. This does not include the final step of emitting machine code into a
    /// code sink.
    ///
    /// Returns the size of the function's code.
    pub fn compile(&mut self, isa: &TargetIsa) -> Result<CodeOffset, CtonError> {
        let _tt = timing::compile();
        self.verify_if(isa)?;

        self.compute_cfg();
        if isa.flags().opt_level() != OptLevel::Fastest {
            self.preopt(isa)?;
        }
        self.legalize(isa)?;
        if isa.flags().opt_level() != OptLevel::Fastest {
            self.postopt(isa)?;
        }
        if isa.flags().opt_level() == OptLevel::Best {
            self.compute_domtree();
            self.compute_loop_analysis();
            self.licm(isa)?;
            self.simple_gvn(isa)?;
        }
        self.compute_domtree();
        self.eliminate_unreachable_code(isa)?;
        if isa.flags().opt_level() != OptLevel::Fastest {
            self.dce(isa)?;
        }
        self.regalloc(isa)?;
        self.prologue_epilogue(isa)?;
        if isa.flags().opt_level() == OptLevel::Best {
            self.shrink_instructions(isa)?;
        }
        self.relax_branches(isa)
    }

    /// Emit machine code directly into raw memory.
    ///
    /// Write all of the function's machine code to the memory at `mem`. The size of the machine
    /// code is returned by `compile` above.
    ///
    /// The machine code is not relocated. Instead, any relocations are emitted into `relocs`.
    ///
    /// This function is unsafe since it does not perform bounds checking on the memory buffer,
    /// and it can't guarantee that the `mem` pointer is valid.
    pub unsafe fn emit_to_memory(
        &self,
        isa: &TargetIsa,
        mem: *mut u8,
        relocs: &mut RelocSink,
        traps: &mut TrapSink,
    ) {
        let _tt = timing::binemit();
        isa.emit_function(&self.func, &mut MemoryCodeSink::new(mem, relocs, traps));
    }

    /// Run the verifier on the function.
    ///
    /// Also check that the dominator tree and control flow graph are consistent with the function.
    pub fn verify<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> verifier::Result {
        verifier::verify_context(&self.func, &self.cfg, &self.domtree, fisa)
    }

    /// Run the verifier only if the `enable_verifier` setting is true.
    pub fn verify_if<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> CtonResult {
        let fisa = fisa.into();
        if fisa.flags.enable_verifier() {
            self.verify(fisa).map_err(Into::into)
        } else {
            Ok(())
        }
    }

    /// Run the locations verifier on the function.
    pub fn verify_locations(&self, isa: &TargetIsa) -> verifier::Result {
        verifier::verify_locations(isa, &self.func, None)
    }

    /// Run the locations verifier only if the `enable_verifier` setting is true.
    pub fn verify_locations_if(&self, isa: &TargetIsa) -> CtonResult {
        if isa.flags().enable_verifier() {
            self.verify_locations(isa).map_err(Into::into)
        } else {
            Ok(())
        }
    }

    /// Perform dead-code elimination on the function.
    pub fn dce<'a, FOI: Into<FlagsOrIsa<'a>>>(&mut self, fisa: FOI) -> CtonResult {
        do_dce(&mut self.func, &mut self.domtree);
        self.verify_if(fisa)?;
        Ok(())
    }

    /// Perform pre-legalization rewrites on the function.
    pub fn preopt(&mut self, isa: &TargetIsa) -> CtonResult {
        do_preopt(&mut self.func);
        self.verify_if(isa)?;
        Ok(())
    }

    /// Run the legalizer for `isa` on the function.
    pub fn legalize(&mut self, isa: &TargetIsa) -> CtonResult {
        // Legalization invalidates the domtree and loop_analysis by mutating the CFG.
        // TODO: Avoid doing this when legalization doesn't actually mutate the CFG.
        self.domtree.clear();
        self.loop_analysis.clear();
        legalize_function(&mut self.func, &mut self.cfg, isa);
        self.verify_if(isa)
    }

    /// Perform post-legalization rewrites on the function.
    pub fn postopt(&mut self, isa: &TargetIsa) -> CtonResult {
        do_postopt(&mut self.func, isa);
        self.verify_if(isa)?;
        Ok(())
    }

    /// Compute the control flow graph.
    pub fn compute_cfg(&mut self) {
        self.cfg.compute(&self.func)
    }

    /// Compute dominator tree.
    pub fn compute_domtree(&mut self) {
        self.domtree.compute(&self.func, &self.cfg)
    }

    /// Compute the loop analysis.
    pub fn compute_loop_analysis(&mut self) {
        self.loop_analysis.compute(
            &self.func,
            &self.cfg,
            &self.domtree,
        )
    }

    /// Compute the control flow graph and dominator tree.
    pub fn flowgraph(&mut self) {
        self.compute_cfg();
        self.compute_domtree()
    }

    /// Perform simple GVN on the function.
    pub fn simple_gvn<'a, FOI: Into<FlagsOrIsa<'a>>>(&mut self, fisa: FOI) -> CtonResult {
        do_simple_gvn(&mut self.func, &mut self.domtree);
        self.verify_if(fisa)
    }

    /// Perform LICM on the function.
    pub fn licm<'a, FOI: Into<FlagsOrIsa<'a>>>(&mut self, fisa: FOI) -> CtonResult {
        do_licm(
            &mut self.func,
            &mut self.cfg,
            &mut self.domtree,
            &mut self.loop_analysis,
        );
        self.verify_if(fisa)
    }

    /// Perform unreachable code elimination.
    pub fn eliminate_unreachable_code<'a, FOI>(&mut self, fisa: FOI) -> CtonResult
    where
        FOI: Into<FlagsOrIsa<'a>>,
    {
        eliminate_unreachable_code(&mut self.func, &mut self.cfg, &self.domtree);
        self.verify_if(fisa)
    }

    /// Run the register allocator.
    pub fn regalloc(&mut self, isa: &TargetIsa) -> CtonResult {
        self.regalloc.run(
            isa,
            &mut self.func,
            &self.cfg,
            &mut self.domtree,
        )
    }

    /// Insert prologue and epilogues after computing the stack frame layout.
    pub fn prologue_epilogue(&mut self, isa: &TargetIsa) -> CtonResult {
        isa.prologue_epilogue(&mut self.func)?;
        self.verify_if(isa)?;
        self.verify_locations_if(isa)?;
        Ok(())
    }

    /// Run the instruction shrinking pass.
    pub fn shrink_instructions(&mut self, isa: &TargetIsa) -> CtonResult {
        shrink_instructions(&mut self.func, isa);
        self.verify_if(isa)?;
        self.verify_locations_if(isa)?;
        Ok(())
    }

    /// Run the branch relaxation pass and return the final code size.
    pub fn relax_branches(&mut self, isa: &TargetIsa) -> Result<CodeOffset, CtonError> {
        let code_size = relax_branches(&mut self.func, isa)?;
        self.verify_if(isa)?;
        self.verify_locations_if(isa)?;

        Ok(code_size)
    }
}