1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
//! A forest of B+-trees.
//!
//! This module provides a data structures representing a set of small ordered sets or maps.
//! It is implemented as a forest of B+-trees all allocating nodes out of the same pool.
//!
//! **These are not general purpose data structures that are somehow magically faster that the
//! standard library's `BTreeSet` and `BTreeMap` types.**
//!
//! The tradeoffs are different:
//!
//! - Keys and values are expected to be small and copyable. We optimize for 32-bit types.
//! - A comparator object is used to compare keys, allowing smaller "context free" keys.
//! - Empty trees have a very small 32-bit footprint.
//! - All the trees in a forest can be cleared in constant time.

use std::borrow::BorrowMut;
use std::cmp::Ordering;

mod map;
mod node;
mod path;
mod pool;
mod set;

pub use self::map::{Map, MapCursor, MapForest, MapIter};
pub use self::set::{Set, SetCursor, SetForest, SetIter};

use self::node::NodeData;
use self::path::Path;
use self::pool::NodePool;

/// The maximum branching factor of an inner node in a B+-tree.
/// The minimum number of outgoing edges is `INNER_SIZE/2`.
const INNER_SIZE: usize = 8;

/// Given the worst case branching factor of `INNER_SIZE/2` = 4, this is the
/// worst case path length from the root node to a leaf node in a tree with 2^32
/// entries. We would run out of node references before we hit `MAX_PATH`.
const MAX_PATH: usize = 16;

/// Key comparator.
///
/// Keys don't need to implement `Ord`. They are compared using a comparator object which
/// provides a context for comparison.
pub trait Comparator<K>
where
    K: Copy,
{
    /// Compare keys `a` and `b`.
    ///
    /// This relation must provide a total ordering or the key space.
    fn cmp(&self, a: K, b: K) -> Ordering;

    /// Binary search for `k` in an ordered slice.
    ///
    /// Assume that `s` is already sorted according to this ordering, search for the key `k`.
    ///
    /// Returns `Ok(idx)` if `k` was found in the slice or `Err(idx)` with the position where it
    /// should be inserted to preserve the ordering.
    fn search(&self, k: K, s: &[K]) -> Result<usize, usize> {
        s.binary_search_by(|x| self.cmp(*x, k))
    }
}

/// Trivial comparator that doesn't actually provide any context.
impl<K> Comparator<K> for ()
where
    K: Copy + Ord,
{
    fn cmp(&self, a: K, b: K) -> Ordering {
        a.cmp(&b)
    }
}

/// Family of types shared by the map and set forest implementations.
trait Forest {
    /// The key type is present for both sets and maps.
    type Key: Copy;

    /// The value type is `()` for sets.
    type Value: Copy;

    /// An array of keys for the leaf nodes.
    type LeafKeys: Copy + BorrowMut<[Self::Key]>;

    /// An array of values for the leaf nodes.
    type LeafValues: Copy + BorrowMut<[Self::Value]>;

    /// Type used for key comparisons.
    type Comparator: Comparator<Self::Key>;

    /// Splat a single key into a whole array.
    fn splat_key(key: Self::Key) -> Self::LeafKeys;

    /// Splat a single value inst a whole array
    fn splat_value(value: Self::Value) -> Self::LeafValues;
}

/// A reference to a B+-tree node.
#[derive(Clone, Copy, PartialEq, Eq)]
struct Node(u32);
entity_impl!(Node, "node");

/// Empty type to be used as the "value" in B-trees representing sets.
#[derive(Clone, Copy)]
struct SetValue();

/// Insert `x` into `s` at position `i`, pushing out the last element.
fn slice_insert<T: Copy>(s: &mut [T], i: usize, x: T) {
    for j in (i + 1..s.len()).rev() {
        s[j] = s[j - 1];
    }
    s[i] = x;
}

/// Shift elements in `s` to the left by `n` positions.
fn slice_shift<T: Copy>(s: &mut [T], n: usize) {
    for j in 0..s.len() - n {
        s[j] = s[j + n];
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use entity::EntityRef;
    use ir::Ebb;

    #[test]
    fn comparator() {
        let ebb1 = Ebb::new(1);
        let ebb2 = Ebb::new(2);
        let ebb3 = Ebb::new(3);
        let ebb4 = Ebb::new(4);
        let vals = [ebb1, ebb2, ebb4];
        let comp = ();
        assert_eq!(comp.search(ebb1, &vals), Ok(0));
        assert_eq!(comp.search(ebb3, &vals), Err(2));
        assert_eq!(comp.search(ebb4, &vals), Ok(2));
    }

    #[test]
    fn slice_insertion() {
        let mut a = ['a', 'b', 'c', 'd'];

        slice_insert(&mut a[0..1], 0, 'e');
        assert_eq!(a, ['e', 'b', 'c', 'd']);

        slice_insert(&mut a, 0, 'a');
        assert_eq!(a, ['a', 'e', 'b', 'c']);

        slice_insert(&mut a, 3, 'g');
        assert_eq!(a, ['a', 'e', 'b', 'g']);

        slice_insert(&mut a, 1, 'h');
        assert_eq!(a, ['a', 'h', 'e', 'b']);
    }

    #[test]
    fn slice_shifting() {
        let mut a = ['a', 'b', 'c', 'd'];

        slice_shift(&mut a[0..1], 1);
        assert_eq!(a, ['a', 'b', 'c', 'd']);

        slice_shift(&mut a[1..], 1);
        assert_eq!(a, ['a', 'c', 'd', 'd']);

        slice_shift(&mut a, 2);
        assert_eq!(a, ['d', 'd', 'd', 'd']);
    }
}