1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
//! Forest of maps.

use super::{Comparator, Forest, Node, NodeData, NodePool, Path, INNER_SIZE};
use packed_option::PackedOption;
#[cfg(test)]
use std::fmt;
use std::marker::PhantomData;
#[cfg(test)]
use std::string::String;

/// Tag type defining forest types for a map.
struct MapTypes<K, V, C>(PhantomData<(K, V, C)>);

impl<K, V, C> Forest for MapTypes<K, V, C>
where
    K: Copy,
    V: Copy,
    C: Comparator<K>,
{
    type Key = K;
    type Value = V;
    type LeafKeys = [K; INNER_SIZE - 1];
    type LeafValues = [V; INNER_SIZE - 1];
    type Comparator = C;

    fn splat_key(key: Self::Key) -> Self::LeafKeys {
        [key; INNER_SIZE - 1]
    }

    fn splat_value(value: Self::Value) -> Self::LeafValues {
        [value; INNER_SIZE - 1]
    }
}

/// Memory pool for a forest of `Map` instances.
pub struct MapForest<K, V, C>
where
    K: Copy,
    V: Copy,
    C: Comparator<K>,
{
    nodes: NodePool<MapTypes<K, V, C>>,
}

impl<K, V, C> MapForest<K, V, C>
where
    K: Copy,
    V: Copy,
    C: Comparator<K>,
{
    /// Create a new empty forest.
    pub fn new() -> Self {
        Self {
            nodes: NodePool::new(),
        }
    }

    /// Clear all maps in the forest.
    ///
    /// All `Map` instances belong to this forest are invalidated and should no longer be used.
    pub fn clear(&mut self) {
        self.nodes.clear();
    }
}

/// B-tree mapping from `K` to `V` using `C` for comparing keys.
///
/// This is not a general-purpose replacement for `BTreeMap`. See the [module
/// documentation](index.html) for more information about design tradeoffs.
///
/// Maps can be cloned, but that operation should only be used as part of cloning the whole forest
/// they belong to. *Cloning a map does not allocate new memory for the clone*. It creates an alias
/// of the same memory.
#[derive(Clone)]
pub struct Map<K, V, C>
where
    K: Copy,
    V: Copy,
    C: Comparator<K>,
{
    root: PackedOption<Node>,
    unused: PhantomData<(K, V, C)>,
}

impl<K, V, C> Map<K, V, C>
where
    K: Copy,
    V: Copy,
    C: Comparator<K>,
{
    /// Make an empty map.
    pub fn new() -> Self {
        Self {
            root: None.into(),
            unused: PhantomData,
        }
    }

    /// Is this an empty map?
    pub fn is_empty(&self) -> bool {
        self.root.is_none()
    }

    /// Get the value stored for `key`.
    pub fn get(&self, key: K, forest: &MapForest<K, V, C>, comp: &C) -> Option<V> {
        self.root
            .expand()
            .and_then(|root| Path::default().find(key, root, &forest.nodes, comp))
    }

    /// Look up the value stored for `key`.
    ///
    /// If it exists, return the stored key-value pair.
    ///
    /// Otherwise, return the last key-value pair with a key that is less than or equal to `key`.
    ///
    /// If no stored keys are less than or equal to `key`, return `None`.
    pub fn get_or_less(&self, key: K, forest: &MapForest<K, V, C>, comp: &C) -> Option<(K, V)> {
        self.root.expand().and_then(|root| {
            let mut path = Path::default();
            match path.find(key, root, &forest.nodes, comp) {
                Some(v) => Some((key, v)),
                None => path.prev(root, &forest.nodes),
            }
        })
    }

    /// Insert `key, value` into the map and return the old value stored for `key`, if any.
    pub fn insert(
        &mut self,
        key: K,
        value: V,
        forest: &mut MapForest<K, V, C>,
        comp: &C,
    ) -> Option<V> {
        self.cursor(forest, comp).insert(key, value)
    }

    /// Remove `key` from the map and return the removed value for `key`, if any.
    pub fn remove(&mut self, key: K, forest: &mut MapForest<K, V, C>, comp: &C) -> Option<V> {
        let mut c = self.cursor(forest, comp);
        if c.goto(key).is_some() {
            c.remove()
        } else {
            None
        }
    }

    /// Remove all entries.
    pub fn clear(&mut self, forest: &mut MapForest<K, V, C>) {
        if let Some(root) = self.root.take() {
            forest.nodes.free_tree(root);
        }
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// Remove all key-value pairs where the predicate returns false.
    ///
    /// The predicate is allowed to update the values stored in the map.
    pub fn retain<F>(&mut self, forest: &mut MapForest<K, V, C>, mut predicate: F)
    where
        F: FnMut(K, &mut V) -> bool,
    {
        let mut path = Path::default();
        if let Some(root) = self.root.expand() {
            path.first(root, &forest.nodes);
        }
        while let Some((node, entry)) = path.leaf_pos() {
            let keep = {
                let (ks, vs) = forest.nodes[node].unwrap_leaf_mut();
                predicate(ks[entry], &mut vs[entry])
            };
            if keep {
                path.next(&forest.nodes);
            } else {
                self.root = path.remove(&mut forest.nodes).into();
            }
        }
    }

    /// Create a cursor for navigating this map. The cursor is initially positioned off the end of
    /// the map.
    pub fn cursor<'a>(
        &'a mut self,
        forest: &'a mut MapForest<K, V, C>,
        comp: &'a C,
    ) -> MapCursor<'a, K, V, C> {
        MapCursor::new(self, forest, comp)
    }

    /// Create an iterator traversing this map. The iterator type is `(K, V)`.
    pub fn iter<'a>(&'a self, forest: &'a MapForest<K, V, C>) -> MapIter<'a, K, V, C> {
        MapIter {
            root: self.root,
            pool: &forest.nodes,
            path: Path::default(),
        }
    }
}

impl<K, V, C> Default for Map<K, V, C>
where
    K: Copy,
    V: Copy,
    C: Comparator<K>,
{
    fn default() -> Self {
        Self::new()
    }
}

#[cfg(test)]
impl<K, V, C> Map<K, V, C>
where
    K: Copy + fmt::Display,
    V: Copy,
    C: Comparator<K>,
{
    /// Verify consistency.
    fn verify(&self, forest: &MapForest<K, V, C>, comp: &C)
    where
        NodeData<MapTypes<K, V, C>>: fmt::Display,
    {
        if let Some(root) = self.root.expand() {
            forest.nodes.verify_tree(root, comp);
        }
    }

    /// Get a text version of the path to `key`.
    fn tpath(&self, key: K, forest: &MapForest<K, V, C>, comp: &C) -> String {
        use std::string::ToString;
        match self.root.expand() {
            None => "map(empty)".to_string(),
            Some(root) => {
                let mut path = Path::default();
                path.find(key, root, &forest.nodes, comp);
                path.to_string()
            }
        }
    }
}

/// A position in a `Map` used to navigate and modify the ordered map.
///
/// A cursor always points at a key-value pair in the map, or "off the end" which is a position
/// after the last entry in the map.
pub struct MapCursor<'a, K, V, C>
where
    K: 'a + Copy,
    V: 'a + Copy,
    C: 'a + Comparator<K>,
{
    root: &'a mut PackedOption<Node>,
    pool: &'a mut NodePool<MapTypes<K, V, C>>,
    comp: &'a C,
    path: Path<MapTypes<K, V, C>>,
}

impl<'a, K, V, C> MapCursor<'a, K, V, C>
where
    K: Copy,
    V: Copy,
    C: Comparator<K>,
{
    /// Create a cursor with a default (off-the-end) location.
    fn new(
        container: &'a mut Map<K, V, C>,
        forest: &'a mut MapForest<K, V, C>,
        comp: &'a C,
    ) -> MapCursor<'a, K, V, C> {
        MapCursor {
            root: &mut container.root,
            pool: &mut forest.nodes,
            comp,
            path: Path::default(),
        }
    }

    /// Is this cursor pointing to an empty map?
    pub fn is_empty(&self) -> bool {
        self.root.is_none()
    }

    /// Move cursor to the next key-value pair and return it.
    ///
    /// If the cursor reaches the end, return `None` and leave the cursor at the off-the-end
    /// position.
    pub fn next(&mut self) -> Option<(K, V)> {
        self.path.next(self.pool)
    }

    /// Move cursor to the previous key-value pair and return it.
    ///
    /// If the cursor is already pointing at the first entry, leave it there and return `None`.
    pub fn prev(&mut self) -> Option<(K, V)> {
        self.root
            .expand()
            .and_then(|root| self.path.prev(root, self.pool))
    }

    /// Get the current key, or `None` if the cursor is at the end.
    pub fn key(&self) -> Option<K> {
        self.path
            .leaf_pos()
            .and_then(|(node, entry)| self.pool[node].unwrap_leaf().0.get(entry).cloned())
    }

    /// Get the current value, or `None` if the cursor is at the end.
    pub fn value(&self) -> Option<V> {
        self.path
            .leaf_pos()
            .and_then(|(node, entry)| self.pool[node].unwrap_leaf().1.get(entry).cloned())
    }

    /// Get a mutable reference to the current value, or `None` if the cursor is at the end.
    pub fn value_mut(&mut self) -> Option<&mut V> {
        self.path
            .leaf_pos()
            .and_then(move |(node, entry)| self.pool[node].unwrap_leaf_mut().1.get_mut(entry))
    }

    /// Move this cursor to `key`.
    ///
    /// If `key` is in the map, place the cursor at `key` and return the corresponding value.
    ///
    /// If `key` is not in the set, place the cursor at the next larger element (or the end) and
    /// return `None`.
    pub fn goto(&mut self, elem: K) -> Option<V> {
        self.root.expand().and_then(|root| {
            let v = self.path.find(elem, root, self.pool, self.comp);
            if v.is_none() {
                self.path.normalize(self.pool);
            }
            v
        })
    }

    /// Move this cursor to the first element.
    pub fn goto_first(&mut self) -> Option<V> {
        self.root.map(|root| self.path.first(root, self.pool).1)
    }

    /// Insert `(key, value))` into the map and leave the cursor at the inserted pair.
    ///
    /// If the map did not contain `key`, return `None`.
    ///
    /// If `key` is already present, replace the existing with `value` and return the old value.
    pub fn insert(&mut self, key: K, value: V) -> Option<V> {
        match self.root.expand() {
            None => {
                let root = self.pool.alloc_node(NodeData::leaf(key, value));
                *self.root = root.into();
                self.path.set_root_node(root);
                None
            }
            Some(root) => {
                // TODO: Optimize the case where `self.path` is already at the correct insert pos.
                let old = self.path.find(key, root, self.pool, self.comp);
                if old.is_some() {
                    *self.path.value_mut(self.pool) = value;
                } else {
                    *self.root = self.path.insert(key, value, self.pool).into();
                }
                old
            }
        }
    }

    /// Remove the current entry (if any) and return the mapped value.
    /// This advances the cursor to the next entry after the removed one.
    pub fn remove(&mut self) -> Option<V> {
        let value = self.value();
        if value.is_some() {
            *self.root = self.path.remove(self.pool).into();
        }
        value
    }
}

/// An iterator visiting the key-value pairs of a `Map`.
pub struct MapIter<'a, K, V, C>
where
    K: 'a + Copy,
    V: 'a + Copy,
    C: 'a + Comparator<K>,
{
    root: PackedOption<Node>,
    pool: &'a NodePool<MapTypes<K, V, C>>,
    path: Path<MapTypes<K, V, C>>,
}

impl<'a, K, V, C> Iterator for MapIter<'a, K, V, C>
where
    K: 'a + Copy,
    V: 'a + Copy,
    C: 'a + Comparator<K>,
{
    type Item = (K, V);

    fn next(&mut self) -> Option<Self::Item> {
        // We use `self.root` to indicate if we need to go to the first element. Reset to `None`
        // once we've returned the first element. This also works for an empty tree since the
        // `path.next()` call returns `None` when the path is empty. This also fuses the iterator.
        match self.root.take() {
            Some(root) => Some(self.path.first(root, self.pool)),
            None => self.path.next(self.pool),
        }
    }
}

#[cfg(test)]
impl<'a, K, V, C> MapCursor<'a, K, V, C>
where
    K: Copy + fmt::Display,
    V: Copy + fmt::Display,
    C: Comparator<K>,
{
    fn verify(&self) {
        self.path.verify(self.pool);
        self.root.map(|root| self.pool.verify_tree(root, self.comp));
    }

    /// Get a text version of the path to the current position.
    fn tpath(&self) -> String {
        use std::string::ToString;
        self.path.to_string()
    }
}

#[cfg(test)]
mod test {
    use super::super::NodeData;
    use super::*;
    use std::mem;
    use std::vec::Vec;

    #[test]
    fn node_size() {
        // check that nodes are cache line sized when keys and values are 32 bits.
        type F = MapTypes<u32, u32, ()>;
        assert_eq!(mem::size_of::<NodeData<F>>(), 64);
    }

    #[test]
    fn empty() {
        let mut f = MapForest::<u32, f32, ()>::new();
        f.clear();

        let mut m = Map::<u32, f32, ()>::new();
        assert!(m.is_empty());
        m.clear(&mut f);

        assert_eq!(m.get(7, &f, &()), None);
        assert_eq!(m.iter(&f).next(), None);
        assert_eq!(m.get_or_less(7, &f, &()), None);
        m.retain(&mut f, |_, _| unreachable!());

        let mut c = m.cursor(&mut f, &());
        assert!(c.is_empty());
        assert_eq!(c.key(), None);
        assert_eq!(c.value(), None);
        assert_eq!(c.next(), None);
        assert_eq!(c.prev(), None);
        c.verify();
        assert_eq!(c.tpath(), "<empty path>");
        assert_eq!(c.goto_first(), None);
        assert_eq!(c.tpath(), "<empty path>");
    }

    #[test]
    fn inserting() {
        let f = &mut MapForest::<u32, f32, ()>::new();
        let mut m = Map::<u32, f32, ()>::new();

        // The first seven values stay in a single leaf node.
        assert_eq!(m.insert(50, 5.0, f, &()), None);
        assert_eq!(m.insert(50, 5.5, f, &()), Some(5.0));
        assert_eq!(m.insert(20, 2.0, f, &()), None);
        assert_eq!(m.insert(80, 8.0, f, &()), None);
        assert_eq!(m.insert(40, 4.0, f, &()), None);
        assert_eq!(m.insert(60, 6.0, f, &()), None);
        assert_eq!(m.insert(90, 9.0, f, &()), None);
        assert_eq!(m.insert(200, 20.0, f, &()), None);

        m.verify(f, &());

        assert_eq!(
            m.iter(f).collect::<Vec<_>>(),
            [
                (20, 2.0),
                (40, 4.0),
                (50, 5.5),
                (60, 6.0),
                (80, 8.0),
                (90, 9.0),
                (200, 20.0),
            ]
        );

        assert_eq!(m.get(0, f, &()), None);
        assert_eq!(m.get(20, f, &()), Some(2.0));
        assert_eq!(m.get(30, f, &()), None);
        assert_eq!(m.get(40, f, &()), Some(4.0));
        assert_eq!(m.get(50, f, &()), Some(5.5));
        assert_eq!(m.get(60, f, &()), Some(6.0));
        assert_eq!(m.get(70, f, &()), None);
        assert_eq!(m.get(80, f, &()), Some(8.0));
        assert_eq!(m.get(100, f, &()), None);

        assert_eq!(m.get_or_less(0, f, &()), None);
        assert_eq!(m.get_or_less(20, f, &()), Some((20, 2.0)));
        assert_eq!(m.get_or_less(30, f, &()), Some((20, 2.0)));
        assert_eq!(m.get_or_less(40, f, &()), Some((40, 4.0)));
        assert_eq!(m.get_or_less(200, f, &()), Some((200, 20.0)));
        assert_eq!(m.get_or_less(201, f, &()), Some((200, 20.0)));

        {
            let mut c = m.cursor(f, &());
            assert_eq!(c.prev(), Some((200, 20.0)));
            assert_eq!(c.prev(), Some((90, 9.0)));
            assert_eq!(c.prev(), Some((80, 8.0)));
            assert_eq!(c.prev(), Some((60, 6.0)));
            assert_eq!(c.prev(), Some((50, 5.5)));
            assert_eq!(c.prev(), Some((40, 4.0)));
            assert_eq!(c.prev(), Some((20, 2.0)));
            assert_eq!(c.prev(), None);
        }

        // Test some removals where the node stays healthy.
        assert_eq!(m.tpath(50, f, &()), "node0[2]");
        assert_eq!(m.tpath(80, f, &()), "node0[4]");
        assert_eq!(m.tpath(200, f, &()), "node0[6]");

        assert_eq!(m.remove(80, f, &()), Some(8.0));
        assert_eq!(m.tpath(50, f, &()), "node0[2]");
        assert_eq!(m.tpath(80, f, &()), "node0[4]");
        assert_eq!(m.tpath(200, f, &()), "node0[5]");
        assert_eq!(m.remove(80, f, &()), None);
        m.verify(f, &());

        assert_eq!(m.remove(20, f, &()), Some(2.0));
        assert_eq!(m.tpath(50, f, &()), "node0[1]");
        assert_eq!(m.tpath(80, f, &()), "node0[3]");
        assert_eq!(m.tpath(200, f, &()), "node0[4]");
        assert_eq!(m.remove(20, f, &()), None);
        m.verify(f, &());

        // [ 40 50 60 90 200 ]

        {
            let mut c = m.cursor(f, &());
            assert_eq!(c.goto_first(), Some(4.0));
            assert_eq!(c.key(), Some(40));
            assert_eq!(c.value(), Some(4.0));
            assert_eq!(c.next(), Some((50, 5.5)));
            assert_eq!(c.next(), Some((60, 6.0)));
            assert_eq!(c.next(), Some((90, 9.0)));
            assert_eq!(c.next(), Some((200, 20.0)));
            c.verify();
            assert_eq!(c.next(), None);
            c.verify();
        }

        // Removals from the root leaf node beyond underflow.
        assert_eq!(m.remove(200, f, &()), Some(20.0));
        assert_eq!(m.remove(40, f, &()), Some(4.0));
        assert_eq!(m.remove(60, f, &()), Some(6.0));
        m.verify(f, &());
        assert_eq!(m.remove(50, f, &()), Some(5.5));
        m.verify(f, &());
        assert_eq!(m.remove(90, f, &()), Some(9.0));
        m.verify(f, &());
        assert!(m.is_empty());
    }

    #[test]
    fn split_level0_leaf() {
        // Various ways of splitting a full leaf node at level 0.
        let f = &mut MapForest::<u32, f32, ()>::new();

        fn full_leaf(f: &mut MapForest<u32, f32, ()>) -> Map<u32, f32, ()> {
            let mut m = Map::new();
            for n in 1..8 {
                m.insert(n * 10, n as f32 * 1.1, f, &());
            }
            m
        }

        // Insert at front of leaf.
        let mut m = full_leaf(f);
        m.insert(5, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(5, f, &()), Some(4.2));

        // Retain even entries, with altered values.
        m.retain(f, |k, v| {
            *v = (k / 10) as f32;
            (k % 20) == 0
        });
        assert_eq!(
            m.iter(f).collect::<Vec<_>>(),
            [(20, 2.0), (40, 4.0), (60, 6.0)]
        );

        // Insert at back of leaf.
        let mut m = full_leaf(f);
        m.insert(80, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(80, f, &()), Some(4.2));

        // Insert before middle (40).
        let mut m = full_leaf(f);
        m.insert(35, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(35, f, &()), Some(4.2));

        // Insert after middle (40).
        let mut m = full_leaf(f);
        m.insert(45, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(45, f, &()), Some(4.2));

        m.clear(f);
        assert!(m.is_empty());
    }

    #[test]
    fn split_level1_leaf() {
        // Various ways of splitting a full leaf node at level 1.
        let f = &mut MapForest::<u32, f32, ()>::new();

        // Return a map whose root node is a full inner node, and the leaf nodes are all full
        // containing:
        //
        // 110, 120, ..., 170
        // 210, 220, ..., 270
        // ...
        // 810, 820, ..., 870
        fn full(f: &mut MapForest<u32, f32, ()>) -> Map<u32, f32, ()> {
            let mut m = Map::new();

            // Start by inserting elements in order.
            // This should leave 8 leaf nodes with 4 elements in each.
            for row in 1..9 {
                for col in 1..5 {
                    m.insert(row * 100 + col * 10, row as f32 + col as f32 * 0.1, f, &());
                }
            }

            // Then top up the leaf nodes without splitting them.
            for row in 1..9 {
                for col in 5..8 {
                    m.insert(row * 100 + col * 10, row as f32 + col as f32 * 0.1, f, &());
                }
            }

            m
        }

        let mut m = full(f);
        // Verify geometry. Get get node2 as the root and leaves node0, 1, 3, ...
        m.verify(f, &());
        assert_eq!(m.tpath(110, f, &()), "node2[0]--node0[0]");
        assert_eq!(m.tpath(140, f, &()), "node2[0]--node0[3]");
        assert_eq!(m.tpath(210, f, &()), "node2[1]--node1[0]");
        assert_eq!(m.tpath(270, f, &()), "node2[1]--node1[6]");
        assert_eq!(m.tpath(310, f, &()), "node2[2]--node3[0]");
        assert_eq!(m.tpath(810, f, &()), "node2[7]--node8[0]");
        assert_eq!(m.tpath(870, f, &()), "node2[7]--node8[6]");

        {
            let mut c = m.cursor(f, &());
            assert_eq!(c.goto_first(), Some(1.1));
            assert_eq!(c.key(), Some(110));
        }

        // Front of first leaf.
        m.insert(0, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(0, f, &()), Some(4.2));

        // First leaf split 4-4 after appending to LHS.
        f.clear();
        m = full(f);
        m.insert(135, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(135, f, &()), Some(4.2));

        // First leaf split 4-4 after prepending to RHS.
        f.clear();
        m = full(f);
        m.insert(145, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(145, f, &()), Some(4.2));

        // First leaf split 4-4 after appending to RHS.
        f.clear();
        m = full(f);
        m.insert(175, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(175, f, &()), Some(4.2));

        // Left-middle leaf split, ins LHS.
        f.clear();
        m = full(f);
        m.insert(435, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(435, f, &()), Some(4.2));

        // Left-middle leaf split, ins RHS.
        f.clear();
        m = full(f);
        m.insert(445, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(445, f, &()), Some(4.2));

        // Right-middle leaf split, ins LHS.
        f.clear();
        m = full(f);
        m.insert(535, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(535, f, &()), Some(4.2));

        // Right-middle leaf split, ins RHS.
        f.clear();
        m = full(f);
        m.insert(545, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(545, f, &()), Some(4.2));

        // Last leaf split, ins LHS.
        f.clear();
        m = full(f);
        m.insert(835, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(835, f, &()), Some(4.2));

        // Last leaf split, ins RHS.
        f.clear();
        m = full(f);
        m.insert(845, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(845, f, &()), Some(4.2));

        // Front of last leaf.
        f.clear();
        m = full(f);
        m.insert(805, 4.2, f, &());
        m.verify(f, &());
        assert_eq!(m.get(805, f, &()), Some(4.2));

        m.clear(f);
        m.verify(f, &());
    }

    // Make a tree with two barely healthy leaf nodes:
    // [ 10 20 30 40 ] [ 50 60 70 80 ]
    fn two_leaf(f: &mut MapForest<u32, f32, ()>) -> Map<u32, f32, ()> {
        f.clear();
        let mut m = Map::new();
        for n in 1..9 {
            m.insert(n * 10, n as f32, f, &());
        }
        m
    }

    #[test]
    fn remove_level1() {
        let f = &mut MapForest::<u32, f32, ()>::new();
        let mut m = two_leaf(f);

        // Verify geometry.
        m.verify(f, &());
        assert_eq!(m.tpath(10, f, &()), "node2[0]--node0[0]");
        assert_eq!(m.tpath(40, f, &()), "node2[0]--node0[3]");
        assert_eq!(m.tpath(49, f, &()), "node2[0]--node0[4]");
        assert_eq!(m.tpath(50, f, &()), "node2[1]--node1[0]");
        assert_eq!(m.tpath(80, f, &()), "node2[1]--node1[3]");

        // Remove the front entry from a node that stays healthy.
        assert_eq!(m.insert(55, 5.5, f, &()), None);
        assert_eq!(m.remove(50, f, &()), Some(5.0));
        m.verify(f, &());
        assert_eq!(m.tpath(49, f, &()), "node2[0]--node0[4]");
        assert_eq!(m.tpath(50, f, &()), "node2[0]--node0[4]");
        assert_eq!(m.tpath(55, f, &()), "node2[1]--node1[0]");

        // Remove the front entry from the first leaf node: No critical key to update.
        assert_eq!(m.insert(15, 1.5, f, &()), None);
        assert_eq!(m.remove(10, f, &()), Some(1.0));
        m.verify(f, &());

        // [ 15 20 30 40 ] [ 55 60 70 80 ]

        // Remove the front entry from a right-most node that underflows.
        // No rebalancing for the right-most node. Still need critical key update.
        assert_eq!(m.remove(55, f, &()), Some(5.5));
        m.verify(f, &());
        assert_eq!(m.tpath(55, f, &()), "node2[0]--node0[4]");
        assert_eq!(m.tpath(60, f, &()), "node2[1]--node1[0]");

        // [ 15 20 30 40 ] [ 60 70 80 ]

        // Replenish the right leaf.
        assert_eq!(m.insert(90, 9.0, f, &()), None);
        assert_eq!(m.insert(100, 10.0, f, &()), None);
        m.verify(f, &());
        assert_eq!(m.tpath(55, f, &()), "node2[0]--node0[4]");
        assert_eq!(m.tpath(60, f, &()), "node2[1]--node1[0]");

        // [ 15 20 30 40 ] [ 60 70 80 90 100 ]

        // Removing one entry from the left leaf should trigger a rebalancing from the right
        // sibling.
        assert_eq!(m.remove(20, f, &()), Some(2.0));
        m.verify(f, &());

        // [ 15 30 40 60 ] [ 70 80 90 100 ]
        // Check that the critical key was updated correctly.
        assert_eq!(m.tpath(50, f, &()), "node2[0]--node0[3]");
        assert_eq!(m.tpath(60, f, &()), "node2[0]--node0[3]");
        assert_eq!(m.tpath(70, f, &()), "node2[1]--node1[0]");

        // Remove front entry from the left-most leaf node, underflowing.
        // This should cause two leaf nodes to be merged and the root node to go away.
        assert_eq!(m.remove(15, f, &()), Some(1.5));
        m.verify(f, &());
    }

    #[test]
    fn remove_level1_rightmost() {
        let f = &mut MapForest::<u32, f32, ()>::new();
        let mut m = two_leaf(f);

        // [ 10 20 30 40 ] [ 50 60 70 80 ]

        // Remove entries from the right leaf. This doesn't trigger a rebalancing.
        assert_eq!(m.remove(60, f, &()), Some(6.0));
        assert_eq!(m.remove(80, f, &()), Some(8.0));
        assert_eq!(m.remove(50, f, &()), Some(5.0));
        m.verify(f, &());

        // [ 10 20 30 40 ] [ 70 ]
        assert_eq!(m.tpath(50, f, &()), "node2[0]--node0[4]");
        assert_eq!(m.tpath(70, f, &()), "node2[1]--node1[0]");

        // Removing the last entry from the right leaf should cause a collapse.
        assert_eq!(m.remove(70, f, &()), Some(7.0));
        m.verify(f, &());
    }

    // Make a 3-level tree with barely healthy nodes.
    // 1 root, 8 inner nodes, 7*4+5=33 leaf nodes, 4 entries each.
    fn level3_sparse(f: &mut MapForest<u32, f32, ()>) -> Map<u32, f32, ()> {
        f.clear();
        let mut m = Map::new();
        for n in 1..133 {
            m.insert(n * 10, n as f32, f, &());
        }
        m
    }

    #[test]
    fn level3_removes() {
        let f = &mut MapForest::<u32, f32, ()>::new();
        let mut m = level3_sparse(f);
        m.verify(f, &());

        // Check geometry.
        // Root: node11
        // [ node2 170 node10 330 node16 490 node21 650 node26 810 node31 970 node36 1130 node41 ]
        // L1: node11
        assert_eq!(m.tpath(0, f, &()), "node11[0]--node2[0]--node0[0]");
        assert_eq!(m.tpath(10000, f, &()), "node11[7]--node41[4]--node40[4]");

        // 650 is a critical key in the middle of the root.
        assert_eq!(m.tpath(640, f, &()), "node11[3]--node21[3]--node19[3]");
        assert_eq!(m.tpath(650, f, &()), "node11[4]--node26[0]--node20[0]");

        // Deleting 640 triggers a rebalance from node19 to node 20, cascading to n21 -> n26.
        assert_eq!(m.remove(640, f, &()), Some(64.0));
        m.verify(f, &());
        assert_eq!(m.tpath(650, f, &()), "node11[3]--node26[3]--node20[3]");

        // 1130 is in the first leaf of the last L1 node. Deleting it triggers a rebalance node35
        // -> node37, but no rebalance above where there is no right sibling.
        assert_eq!(m.tpath(1130, f, &()), "node11[6]--node41[0]--node35[0]");
        assert_eq!(m.tpath(1140, f, &()), "node11[6]--node41[0]--node35[1]");
        assert_eq!(m.remove(1130, f, &()), Some(113.0));
        m.verify(f, &());
        assert_eq!(m.tpath(1140, f, &()), "node11[6]--node41[0]--node37[0]");
    }

    #[test]
    fn insert_many() {
        let f = &mut MapForest::<u32, f32, ()>::new();
        let mut m = Map::<u32, f32, ()>::new();

        let mm = 4096;
        let mut x = 0;

        for n in 0..mm {
            assert_eq!(m.insert(x, n as f32, f, &()), None);
            m.verify(f, &());

            x = (x + n + 1) % mm;
        }

        x = 0;
        for n in 0..mm {
            assert_eq!(m.get(x, f, &()), Some(n as f32));
            x = (x + n + 1) % mm;
        }

        x = 0;
        for n in 0..mm {
            assert_eq!(m.remove(x, f, &()), Some(n as f32));
            m.verify(f, &());

            x = (x + n + 1) % mm;
        }

        assert!(m.is_empty());
    }
}