1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
//! Liveness verifier.

use flowgraph::ControlFlowGraph;
use ir::entities::AnyEntity;
use ir::{ExpandedProgramPoint, Function, Inst, ProgramOrder, ProgramPoint, Value};
use isa::TargetIsa;
use regalloc::liveness::Liveness;
use regalloc::liverange::LiveRange;
use std::cmp::Ordering;
use timing;
use verifier::VerifierResult;

/// Verify liveness information for `func`.
///
/// The provided control flow graph is assumed to be sound.
///
/// - All values in the program must have a live range.
/// - The live range def point must match where the value is defined.
/// - The live range must reach all uses.
/// - When a live range is live-in to an EBB, it must be live at all the predecessors.
/// - The live range affinity must be compatible with encoding constraints.
///
/// We don't verify that live ranges are minimal. This would require recomputing live ranges for
/// all values.
pub fn verify_liveness(
    isa: &TargetIsa,
    func: &Function,
    cfg: &ControlFlowGraph,
    liveness: &Liveness,
) -> VerifierResult<()> {
    let _tt = timing::verify_liveness();
    let verifier = LivenessVerifier {
        isa,
        func,
        cfg,
        liveness,
    };
    verifier.check_ebbs()?;
    verifier.check_insts()?;
    Ok(())
}

struct LivenessVerifier<'a> {
    isa: &'a TargetIsa,
    func: &'a Function,
    cfg: &'a ControlFlowGraph,
    liveness: &'a Liveness,
}

impl<'a> LivenessVerifier<'a> {
    /// Check all EBB arguments.
    fn check_ebbs(&self) -> VerifierResult<()> {
        for ebb in self.func.layout.ebbs() {
            for &val in self.func.dfg.ebb_params(ebb) {
                let lr = match self.liveness.get(val) {
                    Some(lr) => lr,
                    None => return err!(ebb, "EBB arg {} has no live range", val),
                };
                self.check_lr(ebb.into(), val, lr)?;
            }
        }
        Ok(())
    }

    /// Check all instructions.
    fn check_insts(&self) -> VerifierResult<()> {
        for ebb in self.func.layout.ebbs() {
            for inst in self.func.layout.ebb_insts(ebb) {
                let encoding = self.func.encodings[inst];

                // Check the defs.
                for &val in self.func.dfg.inst_results(inst) {
                    let lr = match self.liveness.get(val) {
                        Some(lr) => lr,
                        None => return err!(inst, "{} has no live range", val),
                    };
                    self.check_lr(inst.into(), val, lr)?;

                    if encoding.is_legal() {
                        // A legal instruction is not allowed to define ghost values.
                        if lr.affinity.is_unassigned() {
                            return err!(
                                inst,
                                "{} is a ghost value defined by a real [{}] instruction",
                                val,
                                self.isa.encoding_info().display(encoding)
                            );
                        }
                    } else if !lr.affinity.is_unassigned() {
                        // A non-encoded instruction can only define ghost values.
                        return err!(
                            inst,
                            "{} is a real {} value defined by a ghost instruction",
                            val,
                            lr.affinity.display(&self.isa.register_info())
                        );
                    }
                }

                // Check the uses.
                for &val in self.func.dfg.inst_args(inst) {
                    let lr = match self.liveness.get(val) {
                        Some(lr) => lr,
                        None => return err!(inst, "{} has no live range", val),
                    };
                    if !self.live_at_use(lr, inst) {
                        return err!(inst, "{} is not live at this use", val);
                    }

                    // A legal instruction is not allowed to depend on ghost values.
                    if encoding.is_legal() && lr.affinity.is_unassigned() {
                        return err!(
                            inst,
                            "{} is a ghost value used by a real [{}] instruction",
                            val,
                            self.isa.encoding_info().display(encoding)
                        );
                    }
                }
            }
        }
        Ok(())
    }

    /// Is `lr` live at the use `inst`?
    fn live_at_use(&self, lr: &LiveRange, inst: Inst) -> bool {
        let ctx = self.liveness.context(&self.func.layout);

        // Check if `inst` is in the def range, not including the def itself.
        if ctx.order.cmp(lr.def(), inst) == Ordering::Less
            && ctx.order.cmp(inst, lr.def_local_end()) != Ordering::Greater
        {
            return true;
        }

        // Otherwise see if `inst` is in one of the live-in ranges.
        match lr.livein_local_end(ctx.order.inst_ebb(inst).unwrap(), ctx) {
            Some(end) => ctx.order.cmp(inst, end) != Ordering::Greater,
            None => false,
        }
    }

    /// Check the integrity of the live range `lr`.
    fn check_lr(&self, def: ProgramPoint, val: Value, lr: &LiveRange) -> VerifierResult<()> {
        let l = &self.func.layout;

        let loc: AnyEntity = match def.into() {
            ExpandedProgramPoint::Ebb(e) => e.into(),
            ExpandedProgramPoint::Inst(i) => i.into(),
        };
        if lr.def() != def {
            return err!(loc, "Wrong live range def ({}) for {}", lr.def(), val);
        }
        if lr.is_dead() {
            if !lr.is_local() {
                return err!(loc, "Dead live range {} should be local", val);
            } else {
                return Ok(());
            }
        }
        let def_ebb = match def.into() {
            ExpandedProgramPoint::Ebb(e) => e,
            ExpandedProgramPoint::Inst(i) => l.inst_ebb(i).unwrap(),
        };
        match lr.def_local_end().into() {
            ExpandedProgramPoint::Ebb(e) => {
                return err!(loc, "Def local range for {} can't end at {}", val, e)
            }
            ExpandedProgramPoint::Inst(i) => {
                if self.func.layout.inst_ebb(i) != Some(def_ebb) {
                    return err!(loc, "Def local end for {} in wrong ebb", val);
                }
            }
        }

        // Now check the live-in intervals against the CFG.
        for (mut ebb, end) in lr.liveins(self.liveness.context(l)) {
            if !l.is_ebb_inserted(ebb) {
                return err!(loc, "{} livein at {} which is not in the layout", val, ebb);
            }
            let end_ebb = match l.inst_ebb(end) {
                Some(e) => e,
                None => {
                    return err!(
                        loc,
                        "{} livein for {} ends at {} which is not in the layout",
                        val,
                        ebb,
                        end
                    )
                }
            };

            // Check all the EBBs in the interval independently.
            loop {
                // If `val` is live-in at `ebb`, it must be live at all the predecessors.
                for (_, pred) in self.cfg.pred_iter(ebb) {
                    if !self.live_at_use(lr, pred) {
                        return err!(
                            pred,
                            "{} is live in to {} but not live at predecessor",
                            val,
                            ebb
                        );
                    }
                }

                if ebb == end_ebb {
                    break;
                }
                ebb = match l.next_ebb(ebb) {
                    Some(e) => e,
                    None => return err!(loc, "end of {} livein ({}) never reached", val, end_ebb),
                };
            }
        }

        Ok(())
    }
}