1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::{Condvar, Mutex};

/// We define various kinds of latches, which are all a primitive signaling
/// mechanism. A latch starts as false. Eventually someone calls `set()` and
/// it becomes true. You can test if it has been set by calling `is_set()`.
pub trait Latch {
    /// Set the latch, signalling others.
    fn set(&self);
}

impl<T: Latch> Latch for std::sync::Arc<T> {
    fn set(&self) {
        Latch::set(self.as_ref());
    }
}

pub trait LatchProbe {
    /// Test if the latch is set.
    fn is_set(&self) -> bool;
}

impl<T: LatchProbe> LatchProbe for std::sync::Arc<T> {
    fn is_set(&self) -> bool {
        LatchProbe::is_set(self.as_ref())
    }
}

pub(crate) trait LatchWaitProbe: LatchProbe {
    /// Blocks thread until the latch is set.
    fn wait(&self);
}

impl<T: LatchWaitProbe> LatchWaitProbe for std::sync::Arc<T> {
    fn wait(&self) {
        LatchWaitProbe::wait(self.as_ref());
    }
}

/// Spin latches are the simplest, most efficient kind, but they do not support
/// a `wait()` operation. They just have a boolean flag that becomes true when
/// `set()` is called.
#[derive(Default)]
pub struct SpinLatch {
    b: AtomicBool,
}

impl SpinLatch {
    #[inline]
    pub fn new() -> SpinLatch {
        SpinLatch {
            b: AtomicBool::new(false),
        }
    }
}

impl Latch for SpinLatch {
    #[inline]
    fn set(&self) {
        self.b.store(true, Ordering::SeqCst);
    }
}

impl LatchProbe for SpinLatch {
    #[inline]
    fn is_set(&self) -> bool {
        self.b.load(Ordering::SeqCst)
    }
}

/// A Latch starts as false and eventually becomes true. You can block until
/// it becomes true.
pub struct LockLatch<T> {
    m: Mutex<Option<T>>,
    v: Condvar,
}

impl<T> Default for LockLatch<T> {
    fn default() -> Self {
        LockLatch {
            m: Mutex::new(None),
            v: Condvar::new(),
        }
    }
}

impl<T> LockLatch<T> {
    #[inline]
    pub fn new() -> LockLatch<T> {
        Default::default()
    }

    #[inline]
    pub fn set(&self, v: T) {
        let mut guard = self.m.lock().unwrap();
        *guard = Some(v);
        self.v.notify_all();
    }

    #[inline]
    pub fn take(&self) -> T {
        assert!(self.is_set());

        let mut lock = self.m.lock().unwrap();
        ::std::mem::replace(&mut *lock, None).unwrap()
    }
}

impl Latch for LockLatch<()> {
    #[inline]
    fn set(&self) {
        let mut guard = self.m.lock().unwrap();
        *guard = Some(());
        self.v.notify_all();
    }
}

impl<T> LatchProbe for LockLatch<T> {
    #[inline]
    fn is_set(&self) -> bool {
        // Not particularly efficient, but we don't really use this operation
        self.m.lock().unwrap().is_some()
    }
}

impl<T> LatchWaitProbe for LockLatch<T> {
    fn wait(&self) {
        let mut guard = self.m.lock().unwrap();
        while guard.is_none() {
            guard = self.v.wait(guard).unwrap();
        }
    }
}

/// Counting latches are used to implement scopes. They track a counter. Unlike
/// other latches, calling `set()` does not necessarily make the latch be
/// considered `set()`; instead, it just decrements the counter. The latch is
/// only "set" (in the sense that`is_set()` returns true) once the counter reaches zero.
#[derive(Debug, Default)]
pub struct CountLatch {
    counter: AtomicUsize,
}

impl CountLatch {
    #[inline]
    pub fn new() -> CountLatch {
        CountLatch {
            counter: AtomicUsize::new(1),
        }
    }

    #[inline]
    pub fn increment(&self) {
        debug_assert!(!self.is_set());
        self.counter.fetch_add(1, Ordering::Relaxed);
    }
}

impl Latch for CountLatch {
    /// Set the latch to true, releasing all threads who are waiting.
    #[inline]
    fn set(&self) {
        self.counter.fetch_sub(1, Ordering::SeqCst);
    }
}

impl LatchProbe for CountLatch {
    #[inline]
    fn is_set(&self) -> bool {
        // Need to acquire any memory reads before latch was set:
        self.counter.load(Ordering::SeqCst) == 0
    }
}