1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// Copyright 2021 Vladimir Melnikov.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! This module describes NLRI data structures for ipv4

use crate::afi::*;
use std::net::Ipv4Addr;

/// ipv4 prefix unicast/multicast NLRI
#[derive(Debug, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct BgpAddrV4 {
    /// network prefix
    pub addr: Ipv4Addr,
    /// prefix length 0..32
    pub prefixlen: u8,
}
impl BgpAddrV4 {
    /// Constructs new ipv4 prefix
    /// ```
    /// use zettabgp::prelude::BgpAddrV4;
    /// use std::net::Ipv4Addr;
    ///
    /// let pfx = BgpAddrV4::new(Ipv4Addr::new(192,168,0,0),16);
    /// ```
    pub fn new(address: Ipv4Addr, prefix_len: u8) -> BgpAddrV4 {
        BgpAddrV4 {
            addr: address,
            prefixlen: prefix_len,
        }
    }
    fn norm_subnet_u32(&self) -> u32 {
        getn_u32(&self.addr.octets()) & (((1 << (32 - self.prefixlen)) - 1) ^ 0xffffffff)
    }
    /// Check if IP in subnet
    /// ```
    /// use zettabgp::prelude::BgpAddrV4;
    /// use std::net::Ipv4Addr;
    ///
    /// assert!(BgpAddrV4::new(Ipv4Addr::new(192,168,0,0),16).in_subnet(&Ipv4Addr::new(192,168,0,1)))
    /// ```
    pub fn in_subnet(&self, a: &Ipv4Addr) -> bool {
        if self.prefixlen == 0 {
            true
        } else if self.prefixlen > 31 {
            getn_u32(&self.addr.octets()) == getn_u32(&a.octets())
        } else {
            let lv = self.norm_subnet_u32();
            let lh = lv + ((1 << (32 - self.prefixlen)) - 1);
            let va = getn_u32(&a.octets());
            (va >= lv) && (va <= lh)
        }
    }
    /// Returns first IP address (network address) from subnet
    /// ```
    /// use std::net::Ipv4Addr;
    /// use zettabgp::prelude::BgpAddrV4;
    ///
    /// assert_eq!(BgpAddrV4::new(Ipv4Addr::new(192,168,120,130),16).range_first() , Ipv4Addr::new(192,168,0,0) );
    /// ```
    pub fn range_first(&self) -> Ipv4Addr {
        let lv = self.norm_subnet_u32();
        Ipv4Addr::new(
            (lv >> 24) as u8,
            (lv >> 16) as u8,
            (lv >> 8) as u8,
            (lv & 0xff) as u8,
        )
    }
    /// Returns last inclusive IP address for subnet
    /// ```
    /// use std::net::Ipv4Addr;
    /// use zettabgp::prelude::BgpAddrV4;
    ///
    /// assert_eq!(BgpAddrV4::new(Ipv4Addr::new(192,168,120,130),16).range_last() , Ipv4Addr::new(192,168,255,255) );
    /// ```
    pub fn range_last(&self) -> std::net::Ipv4Addr {
        if self.prefixlen < 1 {
            std::net::Ipv4Addr::new(255, 255, 255, 255)
        } else if self.prefixlen > 31 {
            self.range_first()
        } else {
            let lv = self.norm_subnet_u32() + ((1 << (32 - self.prefixlen)) - 1);
            std::net::Ipv4Addr::new(
                (lv >> 24) as u8,
                (lv >> 16) as u8,
                (lv >> 8) as u8,
                (lv & 0xff) as u8,
            )
        }
    }
    /// Check if given subnet is in this subnet
    /// ```
    /// use std::net::Ipv4Addr;
    /// use zettabgp::prelude::BgpAddrV4;
    ///
    /// assert!(BgpAddrV4::new(Ipv4Addr::new(192,168,0,0),16).contains(&BgpAddrV4::new(Ipv4Addr::new(192,168,0,0),24)));
    /// ```
    pub fn contains(&self, a: &BgpAddrV4) -> bool {
        if self.prefixlen < 1 {
            true
        } else if self.prefixlen > a.prefixlen {
            false
        } else if self.prefixlen == a.prefixlen {
            self.addr == a.addr
        } else {
            self.in_subnet(&a.range_first()) && self.in_subnet(&a.range_last())
        }
    }
    pub fn from_bits(bits: u8, buf: &[u8]) -> Result<(BgpAddrV4, usize), BgpError> {
        if bits > 32 {
            return Err(BgpError::from_string(format!(
                "Invalid FEC length: {:?}",
                bits
            )));
        }
        let mut bf = [0 as u8; 4];
        if bits == 0 {
            return Ok((
                BgpAddrV4 {
                    addr: decode_addrv4_from(&bf)?,
                    prefixlen: 0,
                },
                0,
            ));
        }
        let bytes = ((bits + 7) / 8) as usize;
        bf[0..bytes].clone_from_slice(&buf[0..bytes]);
        Ok((
            BgpAddrV4 {
                addr: decode_addrv4_from(&bf)?,
                prefixlen: bits,
            },
            bytes,
        ))
    }
    pub fn to_bits(&self, buf: &mut [u8]) -> Result<(u8, usize), BgpError> {
        if self.prefixlen == 0 {
            return Ok((0, 0));
        }
        let mut bf = [0 as u8; 4];
        bf.clone_from_slice(&self.addr.octets());
        let bytes = ((self.prefixlen + 7) / 8) as usize;
        buf[0..bytes].clone_from_slice(&bf[0..bytes]);
        Ok((self.prefixlen, bytes))
    }
}
impl std::str::FromStr for BgpAddrV4 {
    type Err = std::net::AddrParseError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let parts: Vec<&str> = s.split('/').collect();
        if parts.len() < 2 {
            Ok(BgpAddrV4 {
                addr: parts[0].parse::<std::net::Ipv4Addr>()?,
                prefixlen: 32,
            })
        } else {
            Ok(BgpAddrV4 {
                addr: parts[0].parse::<std::net::Ipv4Addr>()?,
                prefixlen: parts[1].parse::<u8>().unwrap_or(32),
            })
        }
    }
}
impl BgpItem<BgpAddrV4> for BgpAddrV4 {
    fn extract_bits_from(bits: u8, buf: &[u8]) -> Result<(BgpAddrV4, usize), BgpError> {
        BgpAddrV4::from_bits(bits, buf)
    }
    fn set_bits_to(&self, buf: &mut [u8]) -> Result<(u8, usize), BgpError> {
        self.to_bits(buf)
    }
    fn prefixlen(&self) -> usize {
        self.prefixlen as usize
    }
}
impl std::fmt::Display for BgpAddrV4 {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{}/{}", self.addr, self.prefixlen)
    }
}
#[derive(Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct BgpIPv4RD {
    pub rd: BgpRD,
    pub addr: std::net::Ipv4Addr,
}
impl BgpIPv4RD {
    pub fn new(crd: BgpRD, adr: std::net::Ipv4Addr) -> BgpIPv4RD {
        BgpIPv4RD { rd: crd, addr: adr }
    }
}
impl std::fmt::Display for BgpIPv4RD {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        if self.rd.is_zero() {
            self.addr.fmt(f)
        } else {
            write!(f, "<{}>{}", self.rd, self.addr)
        }
    }
}
impl BgpAddrItem<BgpIPv4RD> for BgpIPv4RD {
    fn decode_from(mode: BgpTransportMode, buf: &[u8]) -> Result<(BgpIPv4RD, usize), BgpError> {
        if buf.len() >= 12 {
            let p = BgpRD::decode_from(mode, &buf[0..8])?;
            Ok((
                BgpIPv4RD {
                    rd: p.0,
                    addr: match decode_addr_from(&buf[(p.1)..(p.1 + 4)])? {
                        std::net::IpAddr::V4(n) => n,
                        _ => return Err(BgpError::static_str("Invalid address kind")),
                    },
                },
                p.1 + 4,
            ))
        } else {
            Err(BgpError::static_str("Invalid BgpIPv4RD buffer len"))
        }
    }
    fn encode_to(&self, mode: BgpTransportMode, buf: &mut [u8]) -> Result<usize, BgpError> {
        let pos = self.rd.encode_to(mode, buf)?;
        let p2 = encode_addrv4_to(&self.addr, &mut buf[pos..])?;
        Ok(pos + p2)
    }
}

#[cfg(feature = "serialization")]
impl serde::Serialize for BgpAddrV4 {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        let mut state = serializer.serialize_struct("BgpAddrV4", 2)?;
        state.serialize_field("addr", &self.addr)?;
        state.serialize_field("len", &self.prefixlen)?;
        state.end()
    }
}
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_ipv4_parse() {
        assert_eq!("10.0.0.0".parse::<BgpAddrV4>(),Ok(BgpAddrV4::new(Ipv4Addr::new(10, 0, 0, 0), 32)));
        assert_eq!("10.0.0.0/8".parse::<BgpAddrV4>(),Ok(BgpAddrV4::new(Ipv4Addr::new(10, 0, 0, 0), 8)));
    }

    #[test]
    fn test_ipv4_in_subnet() {
        assert!(BgpAddrV4::new(Ipv4Addr::new(192, 168, 0, 0), 16)
            .in_subnet(&Ipv4Addr::new(192, 168, 0, 1)));
        assert!(BgpAddrV4::new(Ipv4Addr::new(192, 168, 0, 0), 16)
            .contains(&BgpAddrV4::new(Ipv4Addr::new(192, 168, 0, 0), 24)));
    }
    #[test]
    fn test_ipv4_ranges() {
        assert_eq!(
            BgpAddrV4::new(Ipv4Addr::new(192, 168, 120, 130), 16).range_first(),
            Ipv4Addr::new(192, 168, 0, 0)
        );
        assert_eq!(
            BgpAddrV4::new(Ipv4Addr::new(192, 168, 120, 130), 16).range_last(),
            Ipv4Addr::new(192, 168, 255, 255)
        );
    }
}