
Zerocaf: Short ring signatures with Bulletproofs

Carlos Perez
Dusk Foundation∗

carlos@dusk.network

Luke Pearson
Dusk Foundation

luke@dusk.network

April 2019

Abstract

Zerocaf is one of the cryptographic protocols built by, and imple-
mented within, the Dusk Network, which uses zero-knowledge proofs to
show the existence of a private key within one of many public keys. For
this, there will be an elliptic curve, used for the key generation, defined
over a Ristretto scalar field which enables the use of Ristretto in Bul-
letproofs while simultaneously abstracting the computationally intensive
conversion within Rank-1 Constraint System from co-factor 8 scalar field
into a co-factor 1 Ristretto field. This paper provides an explanation of
the current curve development, as well as a contextual understanding of
how this curve implementation acts as one of aspects within the Zerocaf
protocol.

∗https://dusk.network/

Contents

1 Introduction 3

2 Set Inclusion 3
2.1 Example . 3
2.2 Advantages . 4

3 Bulletproofs and Rank 1 Constraint Circuits 4

4 The Ristretto Scalar Field 5

5 Equations 7
5.1 Twisted Edwards and Montgomery Forms 7
5.2 Weierstrass Form . 9

6 Field Elements 9

1 Introduction

The construction and use of elliptic curves is paramount to many cryptographic
protocols. Elliptic curves are among the fastest performing primitives where the
discrete logarithm problem is hard, which is why they are regarded dominant in
the field of cryptography. As the field of cryptography advances, elliptic curves
have been proved to be unparalleled in their use as a cryptographic system at
which speed and security are two of the most outstanding features. Zerocaf
uses elliptic curves for both private and public key generation, these keys are
used in conjunction with zero-knowledge proofs to show how they relate to one
another. By creating proofs which show a private key exists in one of many
public keys, it is possible to perform cryptographic functions on just the private
key, which requires significantly less computational effort but is applicable to all
of the keys. To understand the theory and some of the practical applications of
elliptic curves and their operations in a stand alone context, or their workings
with other cryptographic tools, it is important to familiarise with the difference
in utility of various elliptic curves. From a greater understanding of these curves,
many of the goals in this current project of Dusk will become apparent. The
curve implementation and the choice for certain novel methods can be seen
holistically with all the aspects discussed in this paper and as part of a wider
pragmatic solution to one of the aspects of the Dusk network, which is to perform
elliptic curve cryptography inside of a circuit.
All of the work associated, both current and future either is or will be written
in Rust, as this is the language of the library that is being built.

2 Set Inclusion

Set inclusion will be used to show that a private key is one of many public keys.
The private and public keys are two generated values from a one way function
which are used in a cryptographic system. In any such system, the public key
is used for encryption whereas only the private key is used for decryption. A
public key is classed as set element, where the set is all of the curve points
generated by a base point. The use of set inclusion is to prove that the private
key exists as one of many public keys. A set can qualify as a subset of the other
set if and only if the elements of the former set are likewise present, yet not the
sole elements of the latter set. In order to produce a set inclusion proof, the
Prover P has to convince the Verifier V that a given set is a subset of another
set.

2.1 Example

A simplistic example of the logic outlined above is demonstrated hereafter. If:

A = 1, 3, 5

B = 1, 5

then B is a subset, or ‘proper subset’ of A. It is also important to note that
if:

B = 1, 3, 5

then B would not be a subset of A as B = A, in this case. Also, if

B = 1, 4

then B would be a subset but not a proper subset of A, as every element
of a B must simultaneously be part of A for the subset to exist.

2.2 Advantages

• The advantage of using subsets is that they have varying mathematical
properties, the one which is most pertinent to us is the proof that a subset
exists inside of a set.

• From this, operations can be performed to that particular subset which
can be used to show properties and create proofs of the larger subset
without the extra expense as the whole set is not being used.

A full comprehension of this subset rule is very helpful, as well as largely appli-
cable to the defined curve.
For the current set inclusion use case, due to the set elements being public keys
and the input being a private key, there needs to be a ScalarBaseMult(P =
x ·G) operation.

3 Bulletproofs and Rank 1 Constraint Circuits

Bulletproofs[1] are short non-interactive zero-knowledge proofs[2]. For example,
Bulletproofs can be used to prove that an encrypted number is in a given range,
without leaking any information about the number. Compared to SNARKs[2],
Bulletproofs require no trusted setup, which further reduces the risk of a mali-
cious set up. However, Bulletproofs verification is computationally more inten-
sive relative to the SNARK proof verification. Bulletproofs, in context to their
computational intensity, have linear scaling, which is measured as the size of
the arithmetic circuit.
Bulletproofs are designed to enable efficient confidential transactions in Bitcoin
and other cryptocurrencies. Every transaction contains a cryptographic proof
which proves the validity of the spending transaction. Bulletproofs shrink the
size of the cryptographic proofs from over 10kB to less than 1kB. To prevent
overflows every confidential transaction must carry a proof that all amounts are
positive and smaller than a threshold. Such range proofs are much smaller with
Bulletproofs, this also allows for m transactions to have valid range proofs.
Bulletproofs have many other applications in cryptographic protocols, such as
shortening proofs of solvency, short verifiable shuffles, confidential smart con-
tracts, and as a general drop-in replacement for Sigma-protocols.

Bulletproofs are an optimization to the Efficient Zero-Knowledge Arguments
for Arithmetic Circuits in the Discrete Log Setting paper. The aforementioned
paper introduced an inner-product argument by the following diagram.

The constraint system has the following format:

• An vector of n multiplications that gives 3·n low-level variables: left, right
and output

• An vector of q linear constraints between these variables.

• Additional m high-level variables that represent external facts.

Although Bulletproof implementation provides a solid means of creating fast
proofs, the prior choice of curve is important to ensure that binary decomposi-
tion is not needed within the circuit for reduction. This reduction is negated as
the curve is defined over the Ristretto scalar field.

4 The Ristretto Scalar Field

Ristretto [4] is a technique that constructs prime-order elliptic curve groups,
the construction of these groups stems from non prime-order Elliptic curves.
Ristretto builds upon the Decaf paper[5], where prime-order curve groups are
created from curves with co-factor 4. Ristretto, on the other hand, is applicable
to Edwards curve groups which have a co-factor 4 or 8. Edwards curve have
a point of order 4, this means that points on the curve are not of prime order
and they instead have a small co-factor. By using the Ristretto technique the
abstraction problem is solved for all potential co-factor related issues with a
single protocol. For use of the Ristretto scalar field in this implementation, any

chosen curve needs to be defined over the Ristretto scalar field, for the prime-
order group Ristretto255. This Ristretto scalar field provides a prime-order
group of size 2252 [4] by encoding group elements. The ristretto255 group will
be implemented using points from the curve defined in the next section. This
protocol compresses the co-factor of a curve, with the rationale of being able to
avoid the drawbacks that are concurrent with a co-factor, whilst being able to
capitalize on the robustness of an otherwise solid curve.
If a curve given in standard elliptic curve form, defined as:

• Y = X3 + Ax + B

then

• Let G be a group of prime order for the curve, denoted as q

• A co-factor, denoted by h, exists such that the order of the curve is h · q
for the large prime q

There are various advantages and disadvantages to having a co-factor larger
than one, therefore a thorough analysis must be performed, so that it is known
whether or not co-factor manipulation is needed. For all curves, except for Hes-
sian curves, the co-factor is divisible by 4. To become more useful to a broad
spectrum of cryptography, Ristretto is apt for a large number of curves, which
have a co-factor of 8 or 4. When the co-factor is greater than 1 multiple oper-
ations can be hindered. In the case of set inclusion, having a co-factor larger
than one will hinder the curve operations, specifically relating to the scalar base
operations. In reference to the need for subset proofs, the goal is obstructed
where the co-factor is not compressed, which leads to non-injective behaviour
between the groups. Non-injective functions in set mappings, which is a method
to describe whether an element exists in another set or not, affects the opera-
tions in proving subsets exists within sets.

For elliptic curves, any scalar multiplication is a 1 to 1 mapping if the group
order is prime. Only in a prime-order group is a random scalar for the opera-
tion valid, and it must be in the range 1 to q-1. Whereas in a non prime-order
group, the adding of a small element can lead to a small subgroup confinement
attack[6], which makes it possible to present the same result from different
inputs. When implemented, Ristretto acts as a thin layer, which provides a
protocol to construct a prime-order group.

To embed a curve into this prime field, the definition that an embedded curve
L, is a curve whose base field is defined by the scalar field of another curve, M.
In this case, the Doppio curve, which will be eluded to shortly, has a base field

which is equal to the scalar field defined by Ristretto255. To visualise how this
protocol is performed, when the curve is embedded into the Ristretto scalar field
- two arbitrary Edwards points, P and Q, may be represented as the equivalent
Ristretto points in the Ristretto scalar field. This happens because the Edwards
curve is defined over said field. As a method of creating equivalent points, is
not dissimilar to how X, Y , and Z projective coordinates can represent the
same P and Q Edwards points for a given Edwards curve. The elements of the
created prime-order group, ristretto255, are not curve points, they are simply
represented by curve points. For computation understanding, it must be noted
that not this prime-order group is not a subgroup of the curve and that there
is an unequivocal distinction between the curve points and group elements.

5 Equations

5.1 Twisted Edwards and Montgomery Forms

In order for a selected elliptic align with the goals defined in this paper, it needs
to be both twist secure and Ristretto-ready. The Doppio curve has been chosen
for the reasons highlighted above.

Which is defined as follows:

• Curve equation

−x2 + y2 = 1− 86649

86650
x2y2

Which is Twisted Edwards and used to implement Ristretto255.

• a = −1

• d = 86649
86650

• Basepoint : Y = 8
9

• Montgomery form equivalent:

y2 = x3 + 346598x2 + x

• A = 346598

• Basepoint : X = 17

• The number of points on the curve, G, is

2252 − 121160309657751286123858757838224683208

• The prime order of the subgroup, q, is

2249 − 15145038707218910765482344729778085401

• The prime order of the Ristretto scalar field, l, is

2252 + 27742317777372353535851937790883648493

• Cofactor : h = G
q = 8

.

5.2 Weierstrass Form

• Weierstrass form equivalent:

y2 = x3 + ax + b

• a = 2412335192444087404657728854347664746952372119793302535333
983646055108025796

• b = 1340186218024493002587627141304258192751317844329612519629
993998710484804961

The computation of the Weierstrass form is made to prove point addition in
the simplest possible form as this underlines all of the current elliptic curve
operations. These initial operations on the field elements are inline, which is
made to ensure the most efficient computation possible.

To better contextualise this curve to a use case within the Dusk Network,
the bidding process can be used, as this connects several of the sections in
this paper. The bidding process uses the arithmetic of the curve to perform
operations, as well as the set inclusion principles to the properties of the bid. It
is first necessary to show that a bid lies in the list of valid bids, i.e. is a subset
of all valid bids. This is done by set membership to see if an element is part of
the total set or by showing that the element is linear in N, where N is the size
of the group. Then the necessary requirements for the bid are proven, which is
making sure it hashes to the correct values. Following this, the bid is added to
a vector of valid bids. A binary vector, which is a vector that compactly stores
bits, is then created and this vector must be the same length as the vector of
valid bids plus the created bid. In this binary format, a one is indicative of the
position of your bid, and zero is indicative of the other bids.

6 Field Elements

For curve arithmetic to be performed, it is imperative to have a solid imple-
mentation. This allows for a basis on which the most primary operations can
be carried out, the crucial nature of these operations stems from the ability to
perform multiple cryptographic functions from only a few fundamental opera-
tions.

It is standard when implementing curves from their field elements, that point
addition is the first function to be defined, as it is the foundation on which
the rest of the operations stand. Point addition is simply adding points to one
another along the elliptic curve.

The points which can be shown by x and y, in Cartesian form, lie upon the
elliptic curve and are all multiples of the generator point. Setting the prime
field, over which the curve is defined, aside for a moment allows for more clear
mental imagery of how point addition works. The image below depicts point
addition on a standard elliptic curve, with good visual aids. The generator
point, denoted as G, is the point from which the addition is begun until the
next generator point is reached. This is done by taking a tangent to the Gener-
ator point and then reflecting it on the x-axis, because of the mirror symmetry
properties[7], which gives the next point. The image below provides the reader
with a visual understanding of how the point addition can be performed:

Point addition varies from curve to curve and optimizations are continually per-
formed whilst the field elements are created. The main rationale behind the need
for optimization is to keep the operations time constant. The field elements are
represented in bit terms, which are commonly converted to u64 arrays. Unfortu-
nately, the aforementioned formatting can lead to problems with the arithmetic
in programming. These issues are often centred around over-spill, which occurs
when making computations that have bit carrying. Such issues arises when us-
ing 32-byte arrays in addition, which impacts the overall performance as the
operation leaves remainders due to the bit-carrying.

In order to avoid the issues mentioned above, radix representations of the field
elements are utilized in order to avoid this bit-carrying as well as to eliminate
any potential overflows created during addition, which makes the implementa-
tion more efficient. Every field element has to be represented as an array of

five u64’s (in a concrete radix representation), which enables the computation
of the product in the form u64 · u64 = u1281.

To achieve this, the chosen radix is 252, which is optimal for dealing with over-
spill. An issue which arises from the use of bit terms is the computational speed
of the field arithmetic operations.

In this case, it is known that the most expensive CPU operation is the integer
division. In order to avoid the operation highlighted above, an implementation
all of the curve arithmetics is combined with bit-shifting techniques[8]. Bit-
shifting is simply done by moving a series of bits to the left or right to achieve
greater efficiency in a mathematical operation. When dealing with radices, there
is always a need to add an integer so that the another module can be achieved,
this integer is what is used for bit-shifting. The selection of this integer is a
simple arithmetic operation on the defined prime of the field. If we let x be the
remainder of the prime field, as shown below:

l = 2252 + x

The value of the integer x can be proven:

p = 0 mod p

p = 2252 + x

2252 + x = 0 mod p

2252 = −x mod p

The integer x is then used in the calculations for radix 252, so that a different
module can be achieved.

From this point addition, many of the further operations are made elemen-
tary as they all work with the manipulation of points, in some mathematical
relation.

1Please note that the Zerocaf implementation is taking advantage of the Rust Programming
Language support for 128-unsigned integer operations.

References

[1] Stanford University, University College London and BlockStream, Benedikt
Bünz, Johnathan Bootle, Dan Boneh, Andrew Polestra, Pieter Wuille and
Greg Maxwell. Bulletproofs: Short Proofs for Confidential Transactions
and More.
https://eprint.iacr.org/2017/1066.pdf

[2] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In 17th Annual
ACM Symposium on Theory of Computing (STOC’85), pages 291–304,
1985.”

[3] Pedersen T.P. (1992) Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing. In: Feigenbaum J. (eds) Advances in Cryptology
— CRYPTO ’91. CRYPTO 1991. Lecture Notes in Computer Science, vol
576. Springer, Berlin, Heidelberg

[4] Isis Lovecruft and Henry de Valence. Ristretto.
https://Ristretto.group/Ristretto.html

[5] Mike Hamburg : Deacaf. November, 2015.
https://eprint.iacr.org/2015/673.pdf

[6] Feng Hao, Thales E-Security, Cambridge, UK
https://eprint.iacr.org/2010/149.pdf

[7] Robert Dijkgraaf: Mirror Symmetry and Elliptic Curves, university of Am-
sterdam, November 15, 2002

[8] Tehcnological University of Visvesvaraya, Jnana Sangama
https://www.academia.edu/8777556/

