logo

Attribute Macro zbus::dbus_proxy

source · []
#[dbus_proxy]
Expand description

Attribute macro for defining D-Bus proxies (using zbus::Proxy and zbus::blocking::Proxy).

The macro must be applied on a trait T. Two matching impl T will provide an asynchronous Proxy implementation, named TraitNameProxy and a blocking one, named TraitNameProxyBlocking. The proxy instances can be created with the associated new() or builder() methods. The former doesn’t take any argument and uses the default service name and path. The later allows you to specify non-default proxy arguments.

The following attributes are supported:

  • interface - the name of the D-Bus interface this proxy is for.

  • default_service - the default service this proxy should connect to.

  • default_path - The default object path the method calls will be sent on and signals will be sent for by the target service.

  • gen_async - Whether or not to generate the asynchronous Proxy type.

  • gen_blocking - Whether or not to generate the blocking Proxy type. If set to false, the asynchronous proxy type will take the name TraitNameProxy (i-e no Async prefix).

  • async_name - Specify the exact name of the asynchronous proxy type.

  • blocking_name - Specify the exact name of the blocking proxy type.

Each trait method will be expanded to call to the associated D-Bus remote interface.

Trait methods accept dbus_proxy attributes:

  • name - override the D-Bus name (pascal case form by default)

  • property - expose the method as a property. If the method takes an argument, it must be a setter, with a set_ prefix. Otherwise, it’s a getter. Additional sub-attributes exists to control specific property behaviors:

    • emits_changed_signal - specifies how property changes are signaled. Valid values are those documented in DBus specifications:
      • "true" - (default) change signal is always emitted with the value included. This uses the default caching behavior of the proxy, and generates a listener method for the change signal.
      • "invalidates" - change signal is emitted, but the value is not included in the signal. This has the same behavior as "true".
      • "const" - property never changes, thus no signal is ever emitted for it. This uses the default caching behavior of the proxy, but does not generate a listener method for the change signal.
      • "false" - change signal is not (guaranteed to be) emitted if the property changes. This disables property value caching, and does not generate a listener method for the change signal.
  • signal - declare a signal just like a D-Bus method. Read the Signals section below for details.

  • no_reply - declare a method call that does not wait for a reply.

  • object - methods that returns an ObjectPath can be annotated with the object attribute to specify the proxy object to be constructed from the returned ObjectPath.

  • async_object - if the assumptions made by object attribute about naming of the asynchronous proxy type, don’t fit your bill, you can use this to specify its exact name.

  • blocking_object - if the assumptions made by object attribute about naming of the blocking proxy type, don’t fit your bill, you can use this to specify its exact name.

    NB: Any doc comments provided shall be appended to the ones added by the macro.

Signals

For each signal method declared, this macro will provide a method, named receive_<method_name> to create a zbus::SignalStream (zbus::blocking::SignalIterator for the blocking proxy) wrapper, named <SignalName>Stream (<SignalName>Iterator for the blocking proxy) that yield a zbus::Message wrapper, named <SignalName>. This wrapper provides type safe access to the signal arguments. It also implements Deref<Target = Message> to allow easy access to the underlying zbus::Message.

Example

use zbus_macros::dbus_proxy;
use zbus::{blocking::Connection, Result, fdo, zvariant::Value};
use futures_util::stream::StreamExt;
use async_io::block_on;

#[dbus_proxy(
    interface = "org.test.SomeIface",
    default_service = "org.test.SomeService",
    default_path = "/org/test/SomeObject"
)]
trait SomeIface {
    fn do_this(&self, with: &str, some: u32, arg: &Value<'_>) -> Result<bool>;

    #[dbus_proxy(property)]
    fn a_property(&self) -> fdo::Result<String>;

    #[dbus_proxy(property)]
    fn set_a_property(&self, a_property: &str) -> fdo::Result<()>;

    #[dbus_proxy(signal)]
    fn some_signal(&self, arg1: &str, arg2: u32) -> fdo::Result<()>;

    #[dbus_proxy(object = "SomeOtherIface", blocking_object = "SomeOtherInterfaceBlock")]
    // The method will return a `SomeOtherIfaceProxy` or `SomeOtherIfaceProxyBlock`, depending
    // on whether it is called on `SomeIfaceProxy` or `SomeIfaceProxyBlocking`, respectively.
    //
    // NB: We explicitly specified the exact name of the blocking proxy type. If we hadn't,
    // `SomeOtherIfaceProxyBlock` would have been assumed and expected. We could also specify
    // the specific name of the asynchronous proxy types, using the `async_object` attribute.
    fn some_method(&self, arg1: &str);
};

#[dbus_proxy(
    interface = "org.test.SomeOtherIface",
    default_service = "org.test.SomeOtherService",
    blocking_name = "SomeOtherInterfaceBlock",
)]
trait SomeOtherIface {}

let connection = Connection::session()?;
// Use `builder` to override the default arguments, `new` otherwise.
let proxy = SomeIfaceProxyBlocking::builder(&connection)
               .destination("org.another.Service")?
               .cache_properties(zbus::CacheProperties::No)
               .build()?;
let _ = proxy.do_this("foo", 32, &Value::new(true));
let _ = proxy.set_a_property("val");

let signal = proxy.receive_some_signal()?.next().unwrap();
let args = signal.args()?;
println!("arg1: {}, arg2: {}", args.arg1(), args.arg2());

// Now the same again, but asynchronous.
block_on(async move {
    let proxy = SomeIfaceProxy::builder(&connection.into())
                   .cache_properties(zbus::CacheProperties::No)
                   .build()
                   .await
                   .unwrap();
    let _ = proxy.do_this("foo", 32, &Value::new(true)).await;
    let _ = proxy.set_a_property("val").await;

    let signal = proxy.receive_some_signal().await?.next().await.unwrap();
    let args = signal.args()?;
    println!("arg1: {}, arg2: {}", args.arg1(), args.arg2());

    Ok::<(), zbus::Error>(())
})?;

zbus_polkit is a good example of how to bind a real D-Bus API.