1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

//! Custom derives for `Yokeable` from the `yoke` crate.

use proc_macro::TokenStream;
use proc_macro2::{Span, TokenStream as TokenStream2};
use quote::quote;
use syn::spanned::Spanned;
use syn::{parse_macro_input, parse_quote, DeriveInput, Ident, Lifetime, Type, WherePredicate};
use synstructure::Structure;

mod visitor;

/// Custom derive for `yoke::Yokeable`,
///
/// If your struct contains `zerovec::ZeroMap`, then the compiler will not
/// be able to guarantee the lifetime covariance due to the generic types on
/// the `ZeroMap` itself. You must add the following attribute in order for
/// the custom derive to work with `ZeroMap`.
///
/// ```rust,ignore
/// #[derive(Yokeable)]
/// #[yoke(prove_covariance_manually)]
/// ```
///
/// Beyond this case, if the derive fails to compile due to lifetime issues, it
/// means that the lifetime is not covariant and `Yokeable` is not safe to implement.
#[proc_macro_derive(Yokeable, attributes(yoke))]
pub fn yokeable_derive(input: TokenStream) -> TokenStream {
    let input = parse_macro_input!(input as DeriveInput);
    TokenStream::from(yokeable_derive_impl(&input))
}

fn yokeable_derive_impl(input: &DeriveInput) -> TokenStream2 {
    let tybounds = input
        .generics
        .type_params()
        .map(|ty| {
            // Strip out param defaults, we don't need them in the impl
            let mut ty = ty.clone();
            ty.eq_token = None;
            ty.default = None;
            ty
        })
        .collect::<Vec<_>>();
    let typarams = tybounds
        .iter()
        .map(|ty| ty.ident.clone())
        .collect::<Vec<_>>();
    // We require all type parameters be 'static, otherwise
    // the Yokeable impl becomes really unweildy to generate safely
    let static_bounds: Vec<WherePredicate> = typarams
        .iter()
        .map(|ty| parse_quote!(#ty: 'static))
        .collect();
    let lts = input.generics.lifetimes().count();
    if lts == 0 {
        let name = &input.ident;
        quote! {
            // This is safe because there are no lifetime parameters.
            unsafe impl<'a, #(#tybounds),*> yoke::Yokeable<'a> for #name<#(#typarams),*> where #(#static_bounds),* {
                type Output = Self;
                #[inline]
                fn transform(&self) -> &Self::Output {
                    self
                }
                #[inline]
                fn transform_owned(self) -> Self::Output {
                    self
                }
                #[inline]
                unsafe fn make(this: Self::Output) -> Self {
                    this
                }
                #[inline]
                fn transform_mut<F>(&'a mut self, f: F)
                where
                    F: 'static + for<'b> FnOnce(&'b mut Self::Output) {
                    f(self)
                }
            }
            // This is safe because there are no lifetime parameters.
            unsafe impl<'a, #(#tybounds),*> yoke::IsCovariant<'a> for #name<#(#typarams),*> where #(#static_bounds),* {}
        }
    } else {
        if lts != 1 {
            return syn::Error::new(
                input.generics.span(),
                "derive(Yokeable) cannot have multiple lifetime parameters",
            )
            .to_compile_error();
        }
        let name = &input.ident;
        let manual_covariance = input.attrs.iter().any(|a| {
            if let Ok(i) = a.parse_args::<Ident>() {
                if i == "prove_covariance_manually" {
                    return true;
                }
            }
            false
        });
        if manual_covariance {
            let mut structure = Structure::new(input);
            let generics_env = typarams.iter().cloned().collect();
            let static_bounds: Vec<WherePredicate> = typarams
                .iter()
                .map(|ty| parse_quote!(#ty: 'static))
                .collect();
            let mut yoke_bounds: Vec<WherePredicate> = vec![];
            structure.bind_with(|_| synstructure::BindStyle::Move);
            let body = structure.each_variant(|vi| {
                vi.construct(|f, i| {
                    let binding = format!("__binding_{}", i);
                    let field = Ident::new(&binding, Span::call_site());
                    let fty = replace_lifetime(&f.ty, static_lt());

                    let (has_ty, has_lt) = visitor::check_type_for_parameters(&f.ty, &generics_env);
                    if has_ty {
                        // For types without type parameters, the compiler can figure out that the field implements
                        // Yokeable on its own. However, if there are type parameters, there may be complex preconditions
                        // to `FieldTy: Yokeable` that need to be satisfied. We get them to be satisfied by requiring
                        // `FieldTy<'static>: Yokeable<FieldTy<'a>>`
                        if has_lt {
                            let a_ty = replace_lifetime(&f.ty, custom_lt("'a"));
                            yoke_bounds
                                .push(parse_quote!(#fty: yoke::Yokeable<'a, Output = #a_ty>));
                        } else {
                            yoke_bounds.push(parse_quote!(#fty: yoke::Yokeable<'a, Output = #fty>));
                        }
                    }
                    if has_ty || has_lt {
                        // By calling transform_owned on all fields, we manually prove
                        // that the lifetimes are covariant, since this requirement
                        // must already be true for the type that implements transform_owned().
                        quote! {
                            <#fty as yoke::Yokeable<'a>>::transform_owned(#field)
                        }
                    } else {
                        // No nested lifetimes, so nothing to be done
                        quote! { #field }
                    }
                })
            });
            return quote! {
                unsafe impl<'a, #(#tybounds),*> yoke::Yokeable<'a> for #name<'static, #(#typarams),*>
                    where #(#static_bounds,)*
                    #(#yoke_bounds,)* {
                    type Output = #name<'a, #(#typarams),*>;
                    #[inline]
                    fn transform(&'a self) -> &'a Self::Output {
                        unsafe {
                            // safety: we have asserted covariance in
                            // transform_owned
                            ::core::mem::transmute(self)
                        }
                    }
                    #[inline]
                    fn transform_owned(self) -> Self::Output {
                        match self { #body }
                    }
                    #[inline]
                    unsafe fn make(this: Self::Output) -> Self {
                        use core::{mem, ptr};
                        // unfortunately Rust doesn't think `mem::transmute` is possible since it's not sure the sizes
                        // are the same
                        debug_assert!(mem::size_of::<Self::Output>() == mem::size_of::<Self>());
                        let ptr: *const Self = (&this as *const Self::Output).cast();
                        mem::forget(this);
                        ptr::read(ptr)
                    }
                    #[inline]
                    fn transform_mut<F>(&'a mut self, f: F)
                    where
                        F: 'static + for<'b> FnOnce(&'b mut Self::Output) {
                        unsafe { f(core::mem::transmute::<&'a mut Self, &'a mut Self::Output>(self)) }
                    }
                }
            };
        }
        quote! {
            // This is safe because as long as `transform()` compiles,
            // we can be sure that `'a` is a covariant lifetime on `Self`
            //
            // This will not work for structs involving ZeroMap since
            // the compiler does not know that ZeroMap is covariant.
            //
            // This custom derive can be improved to handle this case when
            // necessary
            unsafe impl<'a, #(#tybounds),*> yoke::Yokeable<'a> for #name<'static, #(#typarams),*> where #(#static_bounds),* {
                type Output = #name<'a, #(#typarams),*>;
                #[inline]
                fn transform(&'a self) -> &'a Self::Output {
                    self
                }
                #[inline]
                fn transform_owned(self) -> Self::Output {
                    self
                }
                #[inline]
                unsafe fn make(this: Self::Output) -> Self {
                    use core::{mem, ptr};
                    // unfortunately Rust doesn't think `mem::transmute` is possible since it's not sure the sizes
                    // are the same
                    debug_assert!(mem::size_of::<Self::Output>() == mem::size_of::<Self>());
                    let ptr: *const Self = (&this as *const Self::Output).cast();
                    mem::forget(this);
                    ptr::read(ptr)
                }
                #[inline]
                fn transform_mut<F>(&'a mut self, f: F)
                where
                    F: 'static + for<'b> FnOnce(&'b mut Self::Output) {
                    unsafe { f(core::mem::transmute::<&'a mut Self, &'a mut Self::Output>(self)) }
                }
            }
            // This is safe because it is in the same block as the above impl, which only compiles
            // if 'a is a covariant lifetime.
            unsafe impl<'a, #(#tybounds),*> yoke::IsCovariant<'a> for #name<'a, #(#typarams),*> where #(#static_bounds),* {}
        }
    }
}

fn static_lt() -> Lifetime {
    Lifetime::new("'static", Span::call_site())
}

fn custom_lt(s: &str) -> Lifetime {
    Lifetime::new(s, Span::call_site())
}

fn replace_lifetime(x: &Type, lt: Lifetime) -> Type {
    use syn::fold::Fold;
    struct ReplaceLifetime(Lifetime);

    impl Fold for ReplaceLifetime {
        fn fold_lifetime(&mut self, _: Lifetime) -> Lifetime {
            self.0.clone()
        }
    }
    ReplaceLifetime(lt).fold_type(x.clone())
}