1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
use bitops::set_bit;
use num_traits::PrimInt;
use std::mem::size_of;

/// Bits representation.
pub struct Bits {
    bits: Vec<Option<bool>>,
    size: usize,
}

impl Bits {
    /// Create a new representation of Bits.
    /// # Examples
    /// ```
    /// extern crate xor_distance_exercise;
    /// use xor_distance_exercise::bits::Bits;
    ///
    /// Bits::new::<u64>;
    /// ```
    pub fn new<T: PrimInt>() -> Self {
        // Initialize the vector with known size.
        let size = Self::bit_size::<T>();
        let mut bits: Vec<Option<bool>> = Vec::with_capacity(size);

        // Initialize the vector with default values of None (undecided bit yet).
        for _ in 0..size {
            bits.push(None);
        }

        Bits { bits, size }
    }

    /// Return bit size of the type being represent in bits.
    /// # Examples
    /// ```
    /// extern crate xor_distance_exercise;
    ///
    /// use xor_distance_exercise::bits::Bits;
    ///
    /// assert_eq!(8, Bits::bit_size::<u8>());
    /// assert_eq!(32, Bits::bit_size::<u32>());
    /// assert_eq!(64, Bits::bit_size::<u64>());
    /// assert_eq!(64, Bits::bit_size::<i64>());
    /// ```
    pub fn bit_size<T: PrimInt>() -> usize {
        let byte_size = size_of::<T>();
        let bit_size = byte_size * 8;

        bit_size
    }

    /// Get bit value for the index.
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of range.
    pub fn get_bit(&self, index: usize) -> Option<bool> {
        self.bits[index]
    }

    /// Set new bit value for the index.
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of range.
    pub fn set_bit(&mut self, index: usize, val: bool) {
        self.bits[index] = Some(val);
    }

    /// Set new bit value for the index.
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of range.
    pub fn set_bit_within_constrains(&mut self, index: usize, val: bool) -> bool {
        match self.bits[index] {
            // Existing bit with a different value is a breach of constrains.
            Some(bit) if bit != val => return false,
            // The value is already present, nothing to do here.
            Some(_) => {}
            // No value set as yet so just assign it.
            None => self.bits[index] = Some(val),
        }

        true
    }

    /// Is bit decided already?
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of range.
    pub fn is_bit_decided(&self, index: usize) -> bool {
        let bit = self.bits[index];

        bit.is_some()
    }

    /// Form and return a number based on bits representation, pad/fill undecided bits by zeros.
    pub fn form_zero_padded_number<T: PrimInt>(&self) -> Result<T, &str> {
        if Self::bit_size::<T>() < self.size {
            return Err("Requested number type has not enough bits to represent the whole number!");
        }

        // Initialize the number with "0".
        let mut number: T = T::zero();

        // Construct the number by incorporating in all bits.
        for (index, _) in self.bits.iter().enumerate() {
            self.incorporate_bit(index, &mut number);
        }

        Ok(number)
    }

    /// Incorporate bit into the provided number.
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of range.
    fn incorporate_bit<T: PrimInt>(&self, index: usize, number: &mut T) {
        let bit = self.bits[index];

        // Set only "1" bit as the "0" bit is there by default.
        match bit {
            Some(bit) if bit == true => {
                set_bit::<T>(number, index);
            }
            _ => {}
        }
    }
}