1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
#![deny(missing_docs)]
//! This crate implements the XFetch probabilistic early expiration algorithm.
//!
//! # Cache Stampede
//!
//! A cache stampede is a type of cascading failure that can occur when
//! massively parallel computing systems with caching mechanisms come under
//! very high load. This behaviour is sometimes also called dog-piling.
//!
//! Under normal load, cache misses will trigger a recomputation to refresh the
//! cache. Other process or thread can continue as before.
//!
//! Under heavy load, cache misses may trigger multipre process / threads trying
//! to refresh content thus add more loading to the resource source which the
//! cache was meant to reduce the loading.
//!
//! Several approaches can be used to mitigate cache stampedes. The algorithm
//! used here is proposed by Vattani, A.; Chierichetti, F.; Lowenstein, K.
//! (2015) in the paper [Optimal Probabilistic Cache Stampede Prevention][vldb].
//!
//! The idea is any worker can volunteer to recompute the value before it
//! expires. With a probability that increases when the cache entry approaches
//! expiration, each worker may recompute the cache by making an independent
//! decision. The effect of the cache stampede is mitigated as fewer workers
//! will expire at the same time.
//!
//! The following is the algorithm pseudo code:
//!
//! ```ignore
//! function XFetch(key, ttl; beta = 1)
//!     value, delta, expiry <- cache_read(key)
//!     if !value or time() - delta * beta * ln(rand()) >= expiry then
//!         start <- time()
//!         value <- recompute_value()
//!         delta <- time() - start
//!         cache_write(key, (value, delta), ttl)
//!     end
//!     return value
//! end
//! ```
//!
//! The parameter **beta** can be set to greater than `1.0` to favor earlier
//! recomputation or lesser to favor later. The default `1.0` is optimal for
//! most use cases.
//!
//! `rand()` is a random number in the range (0, 1].
//!
//! **delta** is the time required for the recomputation. If it takes longer to
//! recompute then the algorithm will also favor earlier recomputation.
//!
//! # Examples
//!
//! Create a single cache entry and test it's expiration:
//!
//! ```rust
//! # struct SomeValue { value: u64, ttl: u64 };
//! # fn expensive_computation() -> SomeValue { SomeValue { value: 42, ttl: 10000 } }
//! use xfetch::CacheEntry;
//! use std::time::Duration;
//!
//! let entry = CacheEntry::new(|| {
//!     expensive_computation()
//! })
//! .with_ttl(|value| {
//!     Duration::from_millis(value.ttl)
//! })
//! .build();
//!
//! assert!(!entry.is_expired());
//! ```
//!
//! The [CacheEntry](struct.CacheEntry.html) can be used with any cache library.
//! For example the `lru` crate:
//!
//! ```rust
//! use lru::LruCache;
//! use xfetch::CacheEntry;
//! use std::time::Duration;
//!
//! struct SomeValue {
//!     value: u64,
//!     ttl: u64
//! };
//!
//! fn recompute_value(n: u64) -> SomeValue {
//!     SomeValue { value: n, ttl: 10000 }
//! }
//!
//! fn main() {
//!     let mut cache = LruCache::new(2);
//!
//!     cache.put("apple", CacheEntry::new(|| recompute_value(3))
//!         .with_ttl(|v| Duration::from_millis(v.ttl))
//!         .build());
//!     cache.put("banana", CacheEntry::new(|| recompute_value(2))
//!         .with_ttl(|v| Duration::from_millis(v.ttl))
//!         .build());
//!
//!     if let Some(entry) = cache.get(&"apple") {
//!         if !entry.is_expired() {
//!             assert_eq!(entry.get().value, 3);
//!         } else {
//!             cache.put("apple", CacheEntry::new(|| recompute_value(3))
//!                 .with_ttl(|v| Duration::from_millis(v.ttl))
//!                 .build());
//!         }
//!     }
//! }
//! ```
//!
//! # References
//!
//! - Wikipedia [Cache Stampede][wikipedia].
//! - Vattani, A.; Chierichetti, F.; Lowenstein, K. (2015), [Optimal
//!   Probabilistic Cache Stampede Prevention][vldb] (PDF), 8 (8), VLDB, pp. 886–897,
//!   ISSN 2150-8097.
//! - Jim Nelson, Internet Archive, [RedisConf17 - Preventing cache stampede with Redis & XFetch][archive].
//!
//! [vldb]: http://www.vldb.org/pvldb/vol8/p886-vattani.pdf
//! [wikipedia]: https://en.wikipedia.org/wiki/Cache_stampede
//! [archive]: https://www.slideshare.net/RedisLabs/redisconf17-internet-archive-preventing-cache-stampede-with-redis-and-xfetch

use rand::{distributions::OpenClosed01, thread_rng, Rng, RngCore};
use std::time::{Duration, Instant};

const DEFAULT_BETA: f32 = 1.0;

/// The builder for building [CacheEntry](struct.CacheEntry.html) with
/// supplied parameters.
pub struct CacheEntryBuilder<T> {
    value: T,
    delta: Duration,
    beta: f32,
    expiry: Option<Instant>,
}

impl<T> CacheEntryBuilder<T> {
    /// Set the beta value.
    ///
    /// Beta value > `1.0` favors more eager early expiration, value < `1.0`
    /// favors lazier early expiration.
    ///
    /// The default value `1.0` is usually the optimal value for most use cases.
    pub fn with_beta(mut self, beta: f32) -> CacheEntryBuilder<T> {
        self.beta = beta;
        self
    }

    /// Set the delta.
    ///
    /// Usually the delta value is mesured from the time took by the
    /// recomputation function. However, if the recomputation function does not
    /// reflect the actual time required (for example, a asynchronous
    /// computation), then the delta value can be set via this method.
    ///
    /// The reference of the value returned by the recomputation function is
    /// passed to the closure.
    pub fn with_delta<F>(mut self, f: F) -> CacheEntryBuilder<T>
    where
        F: FnOnce(&T) -> Duration,
    {
        self.delta = f(&self.value);
        self
    }

    /// Set the ttl.
    ///
    /// The reference of the value returned by the recomputation function is
    /// passed to the closure.
    ///
    /// If the ttl is not set then the cache entry will become a eternal cache
    /// entry that will never expire.
    pub fn with_ttl<F>(mut self, f: F) -> CacheEntryBuilder<T>
    where
        F: FnOnce(&T) -> Duration,
    {
        self.expiry = Some(Instant::now() + f(&self.value));
        self
    }

    /// Return a new [CacheEntry](struct.CacheEntry.html) with the supplied
    /// parameters.
    pub fn build(self) -> CacheEntry<T> {
        CacheEntry {
            value: self.value,
            delta: self.delta,
            beta: self.beta,
            expiry: self.expiry,
        }
    }
}

/// A cache entry that employs probabilistic early expiration
///
/// # Examples
///
/// In this example, you can see how to create a new cache entry. The value of
/// the entry is passed in as a closure so the time required for recomputation
/// can be measured. The time to expiration can be set by chaining the
/// [`with_ttl()`](struct.CacheEntryBuilder.html#method.with_ttl) method.
///
/// ```
/// use std::time::Duration;
/// use xfetch::CacheEntry;
///
/// let entry = CacheEntry::new(|| 42)
///     .with_ttl(|_| Duration::from_secs(10))
///     .build();
/// ```
///
/// See the [module-level documentation](index.html) for more information.
#[derive(Copy, Clone)]
pub struct CacheEntry<T> {
    value: T,
    delta: Duration,
    beta: f32,
    expiry: Option<Instant>,
}

impl<T> CacheEntry<T> {
    /// Return a new [CacheEntryBuilder](struct.CacheEntryBuilder.html).
    ///
    /// This method takes a closure which should return the value to be cached.
    pub fn new<F>(f: F) -> CacheEntryBuilder<T>
    where
        F: FnOnce() -> T,
    {
        let start = Instant::now();
        let value = f();
        let recompute_time = start.elapsed();
        CacheEntryBuilder {
            value,
            delta: recompute_time,
            beta: DEFAULT_BETA,
            expiry: None,
        }
    }

    fn is_expired_with_rng(&self, rng: &mut RngCore) -> bool {
        match self.expiry {
            Some(expiry) => {
                let now = Instant::now();
                let delta = self.delta.as_millis() as f32;
                let rand: f32 = rng.sample(OpenClosed01);
                let xfetch = Duration::from_millis((delta * self.beta * -rand.ln()).round() as u64);
                (now + xfetch) >= expiry
            }
            None => false,
        }
    }

    /// Check whether the cache has expired or not.
    ///
    /// With probabilstic early expiration, this method may return `true` before
    /// the entry is really expired.
    pub fn is_expired(&self) -> bool {
        self.is_expired_with_rng(&mut thread_rng())
    }

    /// Check if the cache entry will never expire.
    ///
    /// If the cache entry is created without setting time to expiration then it
    /// is a eternal cache entry.
    pub fn is_eternal(&self) -> bool {
        self.expiry.is_none()
    }

    /// Returns a reference of the contained value.
    pub fn get(&self) -> &T {
        &self.value
    }

    /// Unwraps the value.
    pub fn into_inner(self) -> T {
        self.value
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use rand::rngs::mock::StepRng;

    #[test]
    fn test_new_entry() {
        let entry = CacheEntry::new(|| ()).build();
        assert_eq!(*entry.get(), ());
        assert_eq!(entry.into_inner(), ());
        assert!(entry.is_eternal());
        assert_eq!(entry.beta, DEFAULT_BETA);
    }

    #[test]
    fn test_new_entry_with_ttl() {
        let entry = CacheEntry::new(|| ())
            .with_ttl(|_| Duration::from_secs(60))
            .build();
        assert_eq!(*entry.get(), ());
        assert!(entry.expiry.is_some());
    }

    #[test]
    fn test_new_entry_with_beta() {
        let entry = CacheEntry::new(|| ()).with_beta(0.9).build();
        assert_eq!(*entry.get(), ());
        assert_eq!(entry.beta, 0.9);
    }

    #[test]
    fn test_early_expiry() {
        let mut zeros = StepRng::new(0, 0);
        let entry = CacheEntry::new(|| ())
            .with_delta(|_| Duration::from_secs(10))
            .with_ttl(|_| Duration::from_secs(120))
            .build();
        assert!(entry.is_expired_with_rng(&mut zeros));
    }

    #[test]
    fn test_no_early_expiry() {
        let mut max = StepRng::new(!0, 0);
        let entry = CacheEntry::new(|| ())
            .with_delta(|_| Duration::from_secs(10))
            .with_ttl(|_| Duration::from_secs(120))
            .build();
        assert!(!entry.is_expired_with_rng(&mut max));
    }
}