
  

A Locality-Preserving One-Sided
Binary Tree – Crossbar Switch
Wiring Design Algorithm

Devrim Şahin
Bilkent University



  

INTRODUCTION

One-sided switches make connections from a

set X onto itself, instead of another set Y

A complete one-sided switch can be represented 
by a Kn graph



  

ONE-SIDED SWITCH

This is an implementation of a one-
sided crossbar switch

Each xi has a permanent connection to 
each xj (i ≠ j)

Each connection can be used by 
closing two elementary switches

Problem: Each terminal has a fanout of 
(n-1)



  

ONE-SIDED BINARY TREE – CROSSBAR SWITCH

Solution: Using binary trees

Each terminal effectively has a fanout of 
2

Each binary tree will have a depth of 
log⌈ 2(n-1)⌉

Problem: Wiring section has rather long 
connections

Solution: Reordering 'rows'

Rows (horizontal wires) are ordered as:

(x0,x0,x0), (x1,x1,x1), (x2,x2,x2), (x3,x3,x3) 



  

ONE-SIDED BINARY TREE – CROSSBAR SWITCH

We can re-order rows to be:
(x0,x1,x2,x3),(x0,x1,x2,x3),(x0,x1,x2,x3)

This simplifies the wiring section 
greatly

In fact, we know that when ordered 
such, there exists a wiring scheme 
where the total number of columns 
in the wiring section does not 
exceed n/2  (Proof)⌊ ⌋

Problem: Switching side became 
complicated



  

IMPLEMENTING THE SWITCHING STEP ON A GRID

A simple implementation of 
the switching step (wiring 
part is hidden)

Previously, we claimed that 
there exists a wiring 
scheme with at most n/2  ⌊ ⌋
columns. We propose a 
method to actually design 
that scheme.



  

DESIGNING A WIRING SCHEME

One method appeals to cyclic permutation 
groups

For our example, cyclic permutation groups 
are:

 p = (0123),     p2 = (02)(13),    p3 = (0321)

To obtain a wiring scheme, pair the numbers:

 p = (0123),     p2 = (02)(13),    p3 = (0321)

The connections to be made are:

(01),(23),(02),(13),(03),(21)

Wiring is shown on the right



  

DESIGNING A WIRING SCHEME

However this method might become tedious for odd 
n:

 p  = (01234)  (01)(23)→ (4)

 p2 = (02413)  (02)(41)→ (3)

 p3 = (03142)  (03)→ (1)(42)

 p4 = (04321)  (04)→ (3)(21)

Note that (43) and (13) were not generated.

We introduce another intuitive method appealing to 
adjacency matrices



  

ADJACENCY MATRICES

We represent each connection between terminals xi 
and xj with the pair <i,j>

Since we assume connections are two-way 
(undirected), <i,j> = <j,i>

For n terminals, we can represent all the connections 
with an n x n adjacency matrix A

Here, Ai,j corresponds to the pair <i,j>

Then A is symmetric (Ai,j = Aj,i)

For a complete Kn graph,

all Ai,j must be 1 (i≠j)

i
th

 row

j th col.



  

GROUPING PAIRS

To design a complete wiring scheme, we should 
cover all the upper triangle in the matrix

Method: Diagonally scan the matrix

Define pairs of groups as <x, (x+k) mod n>

Example: n=5, k=1, 0 ≤ x < n

Pairs are

<0,1>,<1,2>,<2,3>,<3,4>,<4,0>



  

GROUPING PAIRS – ODD n CASE

We should diagonally cover the entire upper triangle 
by changing k

Example: n=7, k=1,2,3, 0 ≤ x < n

(All pairs are shown in the upper triangle)

We repeat for all k in the range [1, floor(n/2)]

This works well for odd n



  

GROUPING PAIRS – EVEN n CASE

For even n, should consider the case k=n/2 separately

Example: n=8, k=1,2,3,4, 0 ≤ x < n

If we used <i, (i+k) mod n> for k=n/2; we would cover one 
diagonal twice

We can solve this special case by changing the range of x 
for k=n/2:

<x,x+n/2>   0 ≤ x < n/2  (instead of n)



  

GROUPING PAIRS – FORMAL DEFINITION

Below are the formal definitions of these two cases:

For odd n:

    <x, (x+k) mod n>,   0 ≤ x < n,   1 ≤ k < n/2   (Eqn.1)

For even n:

    <x, (x+k) mod n>,   0 ≤ x < n,   1 ≤ k < n/2   (Eqn.1)

    and

    <x, x+n/2>,   0 ≤ x < n/2                                 (Eqn.2)



  

GROUPING PAIRS – WHY?

What is the advantage of grouping pairs in this 
fashion?

For each k in Eqn. 1, we have n pairs

Each terminal xi appears twice in these pairs (Proof in 
the paper): <i, •> and <•, i>

To implement all pairs for a given k, we need exactly 
two copies of every xi

There are no interconnections between different k

From the switching section, we can assign two blocks 
(x0,x1,...,xn-1) to each k and wire them independently



  

WIRING

Eqn.2 is simple to implement

<x,x+n/2>,   0 ≤ x < n/2

Each xi appears once, therefore one block is 
sufficient

Example: n=8, k=4

Pairs: <0,4>,<1,5>,<2,6>,<3,7>

Connections are trivial

Number of columns: n/2  ✓



  

WIRING

Implementation of Eqn.1 for a given k over an 
example: n=8, k=3

Start adding connections <x,x+k> to the 
first block



  

WIRING

Implementation of Eqn.1 for a given k over an 
example: n=8, k=3

Start adding connections <x,x+k> to the 
first block

After adding k connections, <k,2k> will 
collide with <0,k>



  

WIRING

Implementation of Eqn.1 for a given k over an 
example: n=8, k=3

Start adding connections <x,x+k> to the 
first block

After adding k connections, <k,2k> will 
collide with <0,k>

Alternate to the second block, repeat this 
jump between blocks at every k wires



  

WIRING

Implementation of Eqn.1 for a given k over an 
example: n=8, k=3

(cont'd)

Pair <5,0> is a 'reverse pair', that is, 5>0 
unlike other pairs due to the modulo 
operator. For a reverse pair <i,j>, always 
pick j from the second block



  

WIRING

Implementation of Eqn.1 for a given k over an 
example: n=8, k=3

(cont'd)

Pair <5,0> is a 'reverse pair', that is, 5>0 
unlike other pairs due to the modulo 
operator. For a reverse pair <i,j>, always 
pick j from the second block

Again, we have added k connections. 
Collision happens, alternate to block 1



  

WIRING

Implementation of Eqn.1 for a given k over an 
example: n=8, k=3

(cont'd)

Pair <5,0> is a 'reverse pair', that is, 5>0 
unlike other pairs due to the modulo 
operator. For a reverse pair <i,j>, always 
pick j from the second block

Again, we have added k connections. 
Collision happens, alternate to block 1

Add last wires and finalize.



  

WIRING

To obtain complete wiring, repeat for every k:

(Reverse pairs are shown as aligned right)

Number of columns is bounded by floor(n/2)



  

CONCLUSION

We have introduced a method that constructs a one-
sided binary tree – crossbar switch that:

- has at most floor(n/2) columns,

- has no connections between pairs of blocks, thus 
preserving locality,

- is one-pass in nature,

- algorithmically simple.

An implementation can be found at

https://github.com/kubuzetto/crossbarWiring/



  

THANK YOU FOR YOUR PATIENCE!

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

