A Locality-Preserving One-Sided
Binary Tree — Crossbar Switch
Wiring Design Algorithm

Devrim Sahin
Bilkent University

INTRODUCTION

k 5

@

X — Y X — X

One-sided switches make connections from a
set X onto itself, instead of another set Y

A complete one-sided switch can be represented
by a K, graph

ONE-SIDED SWITCH

This is an implementation of a one-

/—o sided crossbar switch
X0 /o
e
j & Each x, has a permanent connection to
X1 @ .,
y a each x; (i #j)
/—
X /. :
2 11T . Each connection can be used by
closing two elementary switches
—
X /)
3 g]

Problem: Each terminal has a fanout of

(n-1)

switching wiring

ONE-SIDED BINARY TREE - CROSSBAR SWITCH

X0

X1

X2

X3

I

(O

)

switching

wiring

)

Solution: Using binary trees

Each terminal effectively has a fanout of
2

Each binary tree will have a depth of
[log,(n-1)]

Problem: Wiring section has rather long
connections

Solution: Reordering rows'’
Rows (horizontal wires) are ordered as:

(x0,x0,x0), (x1,x1,x1), (x2,x2,x2), (x3,x3,x3)

ONE-SIDED BINARY TREE - CROSSBAR SWITCH

switching

wiring

We can re-order rows to be:
(x0,x1,x2,x3),(x0,x1,x2,x3),(x0,x1,x2,x3)

This simplifies the wiring section
greatly

In fact, we know that when ordered
such, there exists a wiring scheme
where the total number of columns
in the wiring section does not
exceed | n/2| (Proof)

Problem: Switching side became
complicated

IMPLEMENTING THE SWITCHING STEP ON A GRID

A simple implementation of

X0 - S xo the switching step (wiring
N OO OO v, partis hidden)
X3 © ©—*3
® X0 . .
o x1 Previously, we claimed that
® X2 . Ny
l 3 there exists a wiring
| h scheme with at most [n/2]

o x; columns. We propose a
method to actually design
that scheme.

DESIGNING A WIRING SCHEME

One method appeals to cyclic permutation
groups

For our example, cyclic permutation groups
are:

p=(0123), p2=(02)(13), p3=(0321)

To obtain a wiring scheme, pair the numbers:

p=(0123), p2=(02)(13), ps=(0321)

The connections to be made are;
(01),(23),(02),(13),(03),(21)
Wiring is shown on the right

®

P

DESIGNING A WIRING SCHEME

However this method might become tedious for odd
n:

p =(01234) — (01)(23)

p2 = (02413) — (02)(41)

p3 =(03142) — (03)(1)(42)

p4=(04321) - (04)(3)(21)
Note that (43) and (13) were not generated.

We introduce another intuitive method appealing to
adjacency matrices

ADJACENCY MATRICES

We represent each connection between terminals x;
and x; with the pair <i,j>

Since we assume connections are two-way
(undirected), <i,j> = <j,i>

For n terminals, we can represent all the connections
with an n x n adjacency matrix A

Here, A;; corresponds to the pair <i,j> j* col.
Then A is symmetric (A;; = A;)) . H

For a complete K, graph, /
all A;; must be 1 (i#j) I

GROUPING PAIRS

To design a complete wiring scheme, we should
cover all the upper triangle in the matrix

Method: Diagonally scan the matrix
Define pairs of groups as <x, (x+k) mod n>

Example: n=5,k=1,0<x<n

Pairs are
<0,1><1,2>,<2,3><3,4>,<4,0>

GROUPING PAIRS — ODD n CASE

We should diagonally cover the entire upper triangle
by changing k

Example: n=7,k=1,2,3,0<x<n
(All pairs are shown in the upper triangle)

<X, (x+1) mod n> <x, (x+2) mod n> <x, (x+3) mod n>

We repeat for all k in the range [1, floor(n/2)]

This works well for odd n

GROUPING PAIRS - EVEN n CASE

For even n, should consider the case k=n/2 separately

Example: n=8, k=1,2,3,4,0<x<n

<X, (x+1) mod n> <X, (x+2) mod n> <X, (x+3) mod n> <X, X+(n/2)>
m l;% I#

If we used <i, (i+k) mod n> for k=n/2; we would cover one
diagonal twice

We can solve this special case by changing the range of x
for k=n/2:

<x,x+n/2> 0<x<n/2 (instead of n)

GROUPING PAIRS - FORMAL DEFINITION

Below are the formal definitions of these two cases:

For odd n:
<X, (xtk) modn> O0=<x<n, 1T<k<n/2 (Eqn.1)

For even n:
<X, (xtk) modn> O0s<x<n, 1T<k<n/2 (Eqn.1)
and
<X, X+n/2>, 0=<x<n/2 (Eqn.2)

GROUPING PAIRS — WHY?

What is the advantage of grouping pairs in this
fashion?

For each k in Egn. 1, we have n pairs

Each terminal x;, appears twice in these pairs (Proof in
the paper): <i, *> and <, i>

To implement all pairs for a given k, we need exactly
two copies of every x;

There are no interconnections between different k

From the switching section, we can assign two blocks
(X, X1,-.-X,) to each k and wire them independently

WIRING

Egn.2 is simple to implement
<X,X+n/2> 0<x<n/2

Each x; appears once, therefore one block is
sufficient

Example: n=8, k=4 o 1
Palrs <Ol4>l<1;5>1<216>;<3;7> §(23 ! ®
Connections are trivial §‘5‘ 1

Number of columns: n/2 X, o

WIRING

Implementation of Egn.1 for a given k over an
example: n=8, k=3

Xo Start adding connections <x,x+k> to the
o first block

WIRING

Implementation of Egn.1 for a given k over an
example: n=8, k=3

Xo Start adding connections <x,x+k> to the
. TT—— first block

X3 Q) 7

] After adding k connections, <k,2k> will

Xe e— collide with <0,k>

WIRING

Implementation of Egn.1 for a given k over an
example: n=8, k=3

Xo Start adding connections <x,x+k> to the
. IT7-— first block

X3 -&

] After adding k connections, <k,2k> will

X collide with <0,k>

X Alternate to the second block, repeat this

X jump between blocks at every k wires

WIRING

Implementation of Egn.1 for a given k over an
example: n=8, k=3

Xo (cont'd)

X1 P

% T Pair <5,0> is a reverse pair', that is, 5>0
g unlike other pairs due to the modulo

X operator. For a reverse pair <i,j>, always

pick j from the second block

WIRING

Implementation of Egn.1 for a given k over an
example: n=8, k=3

- (cont'd)

X1 P

% T Pair <5,0> is a reverse pair', that is, 5>0
g unlike other pairs due to the modulo

X operator. For a reverse pair <i,j>, always

pick j from the second block

- I— Again, we have added k connections.
Ca= Collision happens, alternate to block 1

WIRING

Implementation of Egn.1 for a given k over an
example: n=8, k=3

Xo (cont'd)

X1 P

cTT7—— Pair<5,0>is a reverse pair, that is, 5>0
] unlike other pairs due to the modulo

X6 ¢ operator. For a reverse pair <i,j>, always
7 4 5 5

) pick j from the second block

0 P

. 1 Again, we have added k connections.
1 Collision happens, alternate to block 1

Xo 4 Add last wires and finalize.

WIRING

To obtain complete wiring, repeat for every k:

(Reverse pairs are shown as aligned right)
k=1 k=2 k=3 k=4

[y

—1—9 *—1—o

[
NoO O PRhWN-O

4

Al

!

1

NOOAPRLRWN_AONOOAPRWN-~O

NOOAPRLWN_AONOOAOAPRLWN-—-O
®

~NOOAPRWN_AONOOOAPRLWN-—_O

Number of columns is bounded by floor(n/2)

CONCLUSION

We have introduced a method that constructs a one-
sided binary tree — crossbar switch that:

- has at most floor(n/2) columns,

- has no connections between pairs of blocks, thus
preserving locality,

- IS one-pass in nature,
- algorithmically simple.

An implementation can be found at
https://github.com/kubuzetto/crossbarWiring/

THANK YOU FOR YOUR PATIENCE!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

