A Locality-Preserving One-Sided Binary Tree - Crossbar Switch Wiring Design Algorithm

Devrim Şahin
Bilkent University

INTRODUCTION

One-sided switches make connections from a set X onto itself, instead of another set Y

A complete one-sided switch can be represented by a K_{n} graph

ONE-SIDED SWITCH

This is an implementation of a onesided crossbar switch

Each x_{i} has a permanent connection to each $\mathrm{x}_{\mathrm{j}}(\mathrm{i} \neq \mathrm{j})$

Each connection can be used by closing two elementary switches

Problem: Each terminal has a fanout of ($\mathrm{n}-1$)

ONE-SIDED BINARY TREE - CROSSBAR SWITCH

Solution: Using binary trees
Each terminal effectively has a fanout of 2

Each binary tree will have a depth of $\left\lceil\log _{2}(n-1)\right\rceil$

Problem: Wiring section has rather long connections

Solution: Reordering 'rows'
Rows (horizontal wires) are ordered as:
$(x 0, x 0, x 0),(x 1, x 1, x 1),(x 2, x 2, x 2),(x 3, x 3, x 3)$

ONE-SIDED BINARY TREE - CROSSBAR SWITCH

We can re-order rows to be:
($x 0, \mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$), ($\mathrm{x} 0, \mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$), ($\mathrm{x} 0, \mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$)
This simplifies the wiring section greatly

In fact, we know that when ordered such, there exists a wiring scheme where the total number of columns in the wiring section does not exceed $\lfloor\mathrm{n} / 2\rfloor$ (Proof)
Problem: Switching side became complicated

IMPLEMENTING THE SWITCHING STEP ON A GRID

A simple implementation of the switching step (wiring part is hidden)

Previously, we claimed that there exists a wiring scheme with at most $\lfloor n / 2\rfloor$ columns. We propose a method to actually design that scheme.

DESIGNING A WIRING SCHEME

One method appeals to cyclic permutation groups
For our example, cyclic permutation groups are:

$$
p=(0123), \quad p^{2}=(02)(13), \quad p^{3}=(0321)
$$

To obtain a wiring scheme, pair the numbers:

$$
p=(0123), \quad p^{2}=(02)(13), \quad p^{3}=(0321)
$$

The connections to be made are:
(01),(23),(02),(13),(03),(21)

Wiring is shown on the right

DESIGNING A WIRING SCHEME

However this method might become tedious for odd n:

$$
\begin{aligned}
& \mathrm{p}=(01234) \rightarrow(01)(23)(4) \\
& \mathrm{p}^{2}=(02413) \rightarrow(02)(41)(3) \\
& \mathrm{p}^{3}=(03142) \rightarrow(03)(1)(42) \\
& \mathrm{p}^{4}=(04321) \rightarrow(04)(3)(21)
\end{aligned}
$$

Note that (43) and (13) were not generated.

We introduce another intuitive method appealing to adjacency matrices

ADJACENCY MATRICES

We represent each connection between terminals x_{i} and x_{j} with the pair <i,j>
Since we assume connections are two-way (undirected), <i,j> = <j,i>
For n terminals, we can represent all the connections with an $n \times n$ adjacency matrix \mathbf{A}
Here, $\mathbf{A}_{\mathrm{i}, \mathrm{j}}$ corresponds to the pair <i,j>
Then A is symmetric $\left(\mathrm{A}_{\mathrm{i}, \mathrm{j}}=\mathrm{A}_{\mathrm{j}, \mathrm{i}}\right)$
For a complete K_{n} graph, all $\mathrm{A}_{\mathrm{i}, \mathrm{j}}$ must be $1(\mathrm{i} \neq \mathrm{j})$

GROUPING PAIRS

To design a complete wiring scheme, we should cover all the upper triangle in the matrix
Method: Diagonally scan the matrix
Define pairs of groups as <x, (x+k) mod n>

Example: $n=5, k=1,0 \leq x<n$
Pairs are
$<0,1\rangle,<1,2>,<2,3>,<3,4>,<4,0\rangle$

GROUPING PAIRS - ODD n CASE

We should diagonally cover the entire upper triangle by changing \mathbf{k}
Example: $\mathrm{n}=7, \mathrm{k}=1,2,3,0 \leq \mathrm{x}<\mathrm{n}$
(All pairs are shown in the upper triangle)

We repeat for all k in the range [1, floor(n/2)]
This works well for odd \mathbf{n}

GROUPING PAIRS - EVEN n CASE

For even n , should consider the case $\mathrm{k}=\mathrm{n} / 2$ separately
Example: $\mathrm{n}=8, \mathrm{k}=1,2,3,4,0 \leq \mathrm{x}<\mathrm{n}$

If we used <i, $(i+k) \bmod n>$ for $k=n / 2$; we would cover one diagonal twice
We can solve this special case by changing the range of x for $\mathrm{k}=\mathrm{n} / 2$:
$<x, x+n / 2>0 \leq x<n / 2$ (instead of n)

GROUPING PAIRS - FORMAL DEFINITION

Below are the formal definitions of these two cases:

For odd n :

$$
<x,(x+k) \bmod n>, \quad 0 \leq x<n, \quad 1 \leq k<n / 2 \quad \text { (Eqn.1) }
$$

For even n :
$<x,(x+k) \bmod n>, 0 \leq x<n, 1 \leq k<n / 2 \quad$ (Eqn.1) and

$$
<x, x+n / 2>, \quad 0 \leq x<n / 2
$$

(Eqn.2)

GROUPING PAIRS - WHY?

What is the advantage of grouping pairs in this fashion?

For each k in Eqn. 1, we have n pairs
Each terminal x_{i} appears twice in these pairs (Proof in the paper): <i, •> and <•, i>
To implement all pairs for a given k, we need exactly two copies of every x_{i}

There are no interconnections between different k
From the switching section, we can assign two blocks ($\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}-1}$) to each k and wire them independently

WIRING

Eqn. 2 is simple to implement
$<x, x+n / 2>, \quad 0 \leq x<n / 2$
Each x_{i} appears once, therefore one block is sufficient

Example: $\mathrm{n}=8, \mathrm{k}=4$
Pairs: <0,4>,<1,5>,<2,6>,<3,7>
Connections are trivial
Number of columns: n/2

WIRING

Implementation of Eqn. 1 for a given k over an example: n=8, k=3

Start adding connections <x,x+k> to the

 first block

WIRING

Implementation of Eqn. 1 for a given k over an example: $\mathbf{n = 8}, \mathbf{k}=\mathbf{3}$

Start adding connections <x,x+k> to the first block

After adding k connections, <k,2k> will collide with <0,k>

WIRING

Implementation of Eqn. 1 for a given k over an example: $\mathbf{n = 8}, \mathbf{k}=\mathbf{3}$

Start adding connections $<x, x+k>$ to the first block

After adding k connections, <k,2k> will collide with <0,k>
x_{0} _Alternate to the second block, repeat this
 jump between blocks at every k wires

WIRING

Implementation of Eqn. 1 for a given k over an example: $\mathbf{n = 8}, \mathbf{k}=\mathbf{3}$

(cont'd)
Pair $\langle 5,0>$ is a 'reverse pair', that is, $5>0$ unlike other pairs due to the modulo operator. For a reverse pair <i,j>, always pick j from the second block

WIRING

Implementation of Eqn. 1 for a given k over an example: $\mathbf{n = 8}, \mathbf{k}=\mathbf{3}$

(cont'd)
Pair $<5,0>$ is a 'reverse pair', that is, $5>0$ unlike other pairs due to the modulo operator. For a reverse pair <i,j>, always pick j from the second block
 Again, we have added k connections. Collision happens, alternate to block 1

WIRING

Implementation of Eqn. 1 for a given k over an example: $\mathbf{n}=\mathbf{8}, \mathbf{k}=\mathbf{3}$

(cont'd)
Pair $<5,0>$ is a 'reverse pair', that is, $5>0$ unlike other pairs due to the modulo operator. For a reverse pair <i,j>, always pick j from the second block Again, we have added k connections. Collision happens, alternate to block 1 Add last wires and finalize.

WIRING

To obtain complete wiring, repeat for every k:
(Reverse pairs are shown as aligned right)

Number of columns is bounded by floor(n/2)

CONCLUSION

We have introduced a method that constructs a onesided binary tree - crossbar switch that:

- has at most floor(n/2) columns,
- has no connections between pairs of blocks, thus preserving locality,
- is one-pass in nature,
- algorithmically simple.

An implementation can be found at https://github.com/kubuzetto/crossbarWiring/

THANK YOU FOR YOUR PATIENCE!

Questions?

