1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
//
// Copyright 2017 yvt, all rights reserved.
//
// Licensed under the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>. This file may
// not be copied, modified,or distributed except
// according to those terms.
//
//! A dynamic external memory allocator based on the TLSF (Two-Level Segregated Fit)
//! algorithm[^1].
//!
//! [^1]: Masmano, Miguel, et al. "TLSF: A new dynamic memory allocator for real-time systems."
//!       Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro Conference on. IEEE, 2004.
//!
//! ## Type parameters
//!
//!  - `T` is an integer type used to represent region sizes. You usually use
//!    `u32` or `u64` for this.
//!  - `A` is a memory arena type used to allocate internal block structures.
//!
//! ## A Caveat
//!
//! This TLSF allocator implements a Good-Fit strategy. In order to achieve the
//! O(1) execution time, only the first element of each free space list is examined.
//! As a result, allocations are not guaranteed to succeed even if there
//! is an enough free space if the following condition is met:
//!
//!  - There is no free space that is larger than the requested size by a certain
//!    amount.
//!  - There is a free space that is almost as large as the requested size.
//!
//! Or more strictly:
//!
//!  - Let `S`, `mapping` the number of bytes to allocate and the mapping
//!    function that calculates the indexes into the TLSF data structure given
//!    the size of a block, respectively. There exists no free space with a size
//!    `s` where `mapping(s) != mapping(S) && s > S`.
//!  - There exists a free space with a size `s` where
//!    `mapping(s) == mapping(S) && s < S`.
//!
//! ## Memory Overhead
//!
//! A TLSF allocator requires the following internal storage to operate (some
//! details are excluded):
//!
//!  - A variable storing the size of the heap.
//!  - One first-level list that consists of pointers to second-level lists and
//!    a bit field of type `T` where each bit indicates whether a free block is
//!    available in the corresponding second-level list or not.
//!  - `FLI` second-level lists each of which consists of `1 << SLI` pointers to
//!    free blocks and a bit field of `SLI`-bit wide where each bit indicates
//!    whether the corresponding entry of the free block is valid or not.
//!
//! When the heap size `size` is a power of two and larger than `1 << SLI`,
//! `FLI` can be written as `log2(size) + 1 - SLI`. `SLI` is hard-coded to `4`
//! in this implementation. Using these, the baseline memory consumption can be
//! calculated by the formula `2 * T + 3 * PS + FLI * (3 * PS + SLI * P + SLI / 8)`
//! (where `PS = size_of::<usize>()`).
//!
//! The following table shows the estimated baseline memory consumption of
//! [`SysTlsf`] for common configurations.
//!
//! | `size_of::<usize>()` |  `T`  |       `size`      | memory consumption (bytes) |
//! | -------------------- | ----- | ----------------- | -------------------------- |
//! | `8` (64-bit system)  | `u32` | `16`              | 186                        |
//! |                      | `u32` | `1 << 10` (1KiB)  | 1,110                      |
//! |                      | `u32` | `1 << 24` (16MiB) | 3,266                      |
//! |                      | `u32` | `1 << 30` (1GiB)  | 4,190                      |
//! |                      | `u64` | `16`              | 194                        |
//! |                      | `u64` | `1 << 10` (1KiB)  | 1,118                      |
//! |                      | `u64` | `1 << 24` (16MiB) | 3,274                      |
//! |                      | `u64` | `1 << 30` (1GiB)  | 4,198                      |
//! |                      | `u64` | `1 << 36` (64GiB) | 5,122                      |
//! | `4` (32-bit system)  | `u32` | `16`              | 98                         |
//! |                      | `u32` | `1 << 10` (1KiB)  | 566                        |
//! |                      | `u32` | `1 << 24` (16MiB) | 1,658                      |
//! |                      | `u32` | `1 << 30` (1GiB)  | 2,126                      |
//!
//! [`SysTlsf`]: type.SysTlsf.html
//!
//! Note that this does not include the overhead incurred by the system memory
//! allocator.
//!
//! Furthermore, each allocated/free region (represented by `TlsfBlock`)
//! consumes a certain amount of memory. The exact size of `TlsfBlock` might
//! differ among compiler versions due to structure layout optimizations, but
//! we can know the lower bound:
//!
//! ```
//! use xalloc::tlsf::TlsfBlock;
//! use std::mem::size_of;
//! assert!(size_of::<TlsfBlock<u32, u32>>() >= 25);
//! assert!(size_of::<TlsfBlock<u32, u64>>() >= 41);
//! assert!(size_of::<TlsfBlock<u64, u64>>() >= 49);
//! ```
//!
//! ## Performance
//!
//! The allocation throughput is lower than jemalloc by roughly 10%.
use std::fmt;
use num_traits::{Zero, One};

use int::{BinaryInteger, BinaryUInteger};
use arena::{UnsafeArena, UnsafeArenaWithMembershipCheck, SafeArena};

type TlsfL2Bitmap = u16;
const LOG2_L2_SIZE: u32 = 4; // must be <= log2(sizeof(TlsfL2Bitmap)*8)
const L2_SIZE: u32 = 1 << LOG2_L2_SIZE;

/// TLSF-based external memory allocator.
///
/// See [the module-level documentation] for more.
///
/// [the module-level documentation]: index.html
///
/// ## Type parameters
///
///  - `T` is an integer type used to represent region sizes. You usually use
///    `u32` or `u64` for this.
///  - `A` is a memory arena type used to allocate internal block structures.
///
#[derive(Debug)]
pub struct Tlsf<T, A, P>
where
    A: UnsafeArena<TlsfBlock<T, P>, Ptr = P>,
    P: Clone + Default + PartialEq + Eq + fmt::Debug,
{
    size: T,
    l1: TlsfL1<T, P>,
    blocks: A,
}

use arena;

/// `Tlsf` that uses `CheckedArena` for rigorous memory safety check.
///
/// It is really slow. Use `SysTlsf` in a production code.
///
/// ## Type parameter
///
///  - `T` is an integer type used to represent region sizes. You usually use
///    `u32` or `u64` for this.
///
pub type SafeTlsf<T> = Tlsf<
    T,
    arena::CheckedArena<TlsfBlock<T, arena::checked::Ptr>>,
    arena::checked::Ptr,
>;

/// Type alias of `TlsfRegion` for `SafeTlsf`
pub type SafeTlsfRegion = TlsfRegion<arena::checked::Ptr>;

impl<T: BinaryUInteger> SafeTlsf<T> {
    /// Construct a `SafeTlsf`.
    pub fn new(size: T) -> Self {
        Tlsf::with_arena(size, arena::CheckedArena::new())
    }
}

/// `Tlsf` that uses the system allocator for the internal storage allocation.
///
/// ## Type parameter
///
///  - `T` is an integer type used to represent region sizes. You usually use
///    `u32` or `u64` for this.
///
pub type SysTlsf<T> = Tlsf<
    T,
    arena::PooledArena<
        TlsfBlock<T, arena::sys::Ptr>,
        arena::SysAllocator,
        arena::sys::Ptr,
    >,
    arena::sys::Ptr,
>;

/// Type alias of `TlsfRegion` for `SysTlsf`
pub type SysTlsfRegion = TlsfRegion<arena::sys::Ptr>;

impl<T: BinaryUInteger> SysTlsf<T> {
    /// Construct a `SysTlsf`.
    pub fn new(size: T) -> Self {
        Tlsf::with_arena(size, arena::PooledArena::new(arena::SysAllocator))
    }

    /// Construct a `SysTlsf` with a specific capacity.
    pub fn with_capacity(size: T, capacity: usize) -> Self {
        Tlsf::with_arena(
            size,
            arena::PooledArena::with_capacity(arena::SysAllocator, capacity),
        )
    }
}

/// A handle type to a region allocated in a `Tlsf`.
///
/// `TlsfRegion` returned by a `Tlsf` only can be used with the
/// same `Tlsf`.
#[derive(Debug, PartialEq, Eq, Hash)]
pub struct TlsfRegion<P>(P);

/// Internal data structure used by `Tlsf` that represents a free/occpied memory block.
#[derive(Debug)]
pub struct TlsfBlock<T, P> {
    /// Points the previous (in terms of the external memory address) block.
    prev: Option<P>,

    /// Points the next (in terms of the external memory address) block.
    next: Option<P>,

    /// The external memory address.
    address: T,

    /// The size of the block in the external memory space.
    size: T,
    state: TlsfBlockState<P>,
}

#[derive(Debug, PartialEq, Eq)]
enum TlsfBlockState<P> {
    Free {
        /// The previous free block in the same free space list.
        prev_free: Option<P>,

        /// The next free block in the same free space list.
        next_free: Option<P>,
    },
    Used,
}

impl<P> TlsfBlockState<P> {
    fn is_used(&self) -> bool {
        match self {
            &TlsfBlockState::Used => true,
            _ => false,
        }
    }
}

/// First level table.
#[derive(Debug)]
struct TlsfL1<T, P> {
    /// Array of second level tables.
    ///
    /// - `l1[0]` contains segregated lists for free spaces smaller
    ///   than `L2_SIZE`.
    ///   `l1[0].l2[L] contains the segregated list for free spaces whose sizes
    ///   are equal to `L`.
    /// - `l1[K]` contains segregated lists for free spaces whose sizes are
    ///   in the range `L2_SIZE << (K - 1) .. L2_Size << K`.
    ///   `l1[K].l2[L] contains the segregated list for free spaces whose sizes
    ///   are in the range
    ///   `(L2_SIZE << (K - 1)) + (1 << (K - 1)) * L .. (L2_Size << (K - 1)) + (1 << (K - 1)) * (L + 1)`
    ///
    l1: Vec<TlsfL2<P>>,

    /// Each bit indices whether the corresponding element of
    /// `l1` has at least one free space or not.
    ///
    /// The following invariant holds:
    ///
    ///  - `(bitmap.extract_u32(i..(i+1)) != 0) == (i1[i].bitmap != 0)`
    //
    /// The number of L2 tables is proportional to the number of digits of the pool
    /// size, so using `T` here would be a good choice.
    bitmap: T,

    /// Points the free block that fills entire the available space
    /// (used only if the pool size is a power of two and no
    /// segregated list entry is available for it)
    entire: Option<P>,
}

/// Second level table.
#[derive(Debug, Clone)]
struct TlsfL2<P> {
    /// Each bit indicates whether the corresponding element of
    /// `l2` is valid or not.
    bitmap: TlsfL2Bitmap,

    /// Each element represents the first block in a free space list.
    ///
    /// Points blocks stored in `Tlsf::blocks`. The validity of each
    /// element is indicated by the corresponding bit of `bitmap`.
    l2: [P; L2_SIZE as usize],
}

impl<T, P, A> Tlsf<T, A, P>
where
    T: BinaryUInteger,
    A: UnsafeArena<TlsfBlock<T, P>, Ptr = P>,
    P: Clone + Default + PartialEq + Eq + fmt::Debug,
{
    /// Construct a `Tlsf`.
    pub fn with_arena(size: T, arena: A) -> Self {
        let mut sa = Tlsf {
            l1: TlsfL1::new(&size),
            size: size,
            blocks: arena,
        };

        // Create the initial free block
        let block = TlsfBlock {
            prev: None,
            next: None,
            address: Zero::zero(),
            size: sa.size.clone(),
            state: TlsfBlockState::Used, // don't care
        };
        let block_ptr = sa.blocks.insert(block);
        unsafe {
            sa.l1.link(&mut sa.blocks, block_ptr);
        }

        sa
    }

    /// Get a reference to the underlying memory arena.
    pub fn arena(&self) -> &A {
        &self.blocks
    }

    /// Get a mutable reference to the underlying memory arena.
    pub fn arena_mut(&mut self) -> &mut A {
        &mut self.blocks
    }

    /// Allocate a region of the size `size` with a given alignment requirement.
    ///
    /// Returns a handle of the allocated region and its offset if the
    /// allocation succeeds. Returns `None` otherwise.
    ///
    /// - `align` must be a power of two.
    /// - `size` must not be zero.
    pub fn alloc_aligned(&mut self, size: T, align: T) -> Option<(TlsfRegion<P>, T)> {
        assert!(align.is_power_of_two());
        self.allocate_aligned_log2(size, align.trailing_zeros())
    }

    /// Allocate a region of the size `size`.
    ///
    /// Returns a handle of the allocated region and its offset if the
    /// allocation succeeds. Returns `None` otherwise.
    ///
    /// `size` must not be zero.
    pub fn alloc(&mut self, size: T) -> Option<(TlsfRegion<P>, T)> {
        self.allocate_aligned_log2(size, 0)
    }

    fn allocate_aligned_log2(&mut self, size: T, align_bits: u32) -> Option<(TlsfRegion<P>, T)> {
        if size > self.size {
            return None;
        }
        assert_ne!(size, Zero::zero());

        let suitable = unsafe { self.l1.search_suitable(&mut self.blocks, &size, align_bits) };
        suitable.map(|(position, free_block_ptr, pad)| unsafe {
            let (mut prev, mut next, free_block_address, free_block_size) = {
                let block = self.blocks.get_unchecked(&free_block_ptr);
                (
                    block.prev.clone(),
                    block.next.clone(),
                    block.address.clone(),
                    block.size.clone(),
                )
            };
            let data_end = pad.clone() + size.clone();

            // For exception safety...
            let mut reserve = 0;
            if pad != Zero::zero() {
                reserve += 1;
            }
            if data_end != free_block_size {
                reserve += 1;
            }
            self.blocks.reserve(reserve);

            self.l1.unlink_head(
                &mut self.blocks,
                free_block_ptr.clone(),
                position,
            );
            self.blocks.remove_unchecked(&free_block_ptr);

            if pad != Zero::zero() {
                let block = TlsfBlock {
                    prev: prev.clone(),
                    next: None, // linked later
                    address: free_block_address.clone(),
                    size: pad.clone(),
                    state: TlsfBlockState::Used, // don't care
                };
                let block_ptr = self.blocks.insert(block);
                self.l1.link(&mut self.blocks, block_ptr.clone());
                if let Some(ref old_prev) = prev {
                    self.blocks.get_unchecked_mut(old_prev).next = Some(block_ptr.clone());
                }
                prev = Some(block_ptr);
            }

            if data_end != free_block_size {
                let block = TlsfBlock {
                    prev: None, // linked later
                    next: next.clone(),
                    address: free_block_address.clone() + data_end.clone(),
                    size: free_block_size.clone() - data_end.clone(),
                    state: TlsfBlockState::Used, // don't care
                };
                let block_ptr = self.blocks.insert(block);
                self.l1.link(&mut self.blocks, block_ptr.clone());
                if let Some(ref old_next) = next {
                    self.blocks.get_unchecked_mut(old_next).prev = Some(block_ptr.clone());
                }
                next = Some(block_ptr);
            }

            let main_ptr = {
                let block = TlsfBlock {
                    prev: prev.clone(),
                    next: next.clone(),
                    address: free_block_address.clone() + pad.clone(),
                    size,
                    state: TlsfBlockState::Used, // care!
                };
                let block_ptr = self.blocks.insert(block);
                block_ptr
            };

            // Connect neighboring blocks to this
            let address = self.blocks.get_unchecked(&main_ptr).address.clone();

            if let Some(ptr) = prev {
                self.blocks.get_unchecked_mut(&ptr).next = Some(main_ptr.clone());
            }
            if let Some(ptr) = next {
                self.blocks.get_unchecked_mut(&ptr).prev = Some(main_ptr.clone());
            }


            (TlsfRegion(main_ptr), address)
        })
    }

    /// Deallocate the specified region, without checking the origin of the
    /// `TlsfRegion`.
    ///
    /// This might result in an undefined behavior if `r` originates from
    /// a different instance of `Tlsf`.
    pub unsafe fn dealloc_unchecked(&mut self, r: TlsfRegion<P>) {
        let block_ptr = r.0;

        let (prev_ptr, next_ptr) = {
            let block = self.blocks.get_unchecked(&block_ptr);
            match block.state {
                TlsfBlockState::Used => {}
                _ => unreachable!(),
            }
            (block.prev.clone(), block.next.clone())
        };


        // Try to merge neighboring free blocks
        let prev_info = if let Some(ref ptr) = prev_ptr {
            let block = self.blocks.get_unchecked(ptr);
            if let TlsfBlockState::Free { .. } = block.state {
                Some((block.prev.clone(), block.size.clone()))
            } else {
                None
            }
        } else {
            None
        };
        let next_info = if let Some(ref ptr) = next_ptr {
            let block = self.blocks.get_unchecked(ptr);
            if let TlsfBlockState::Free { .. } = block.state {
                Some((block.next.clone(), block.size.clone()))
            } else {
                None
            }
        } else {
            None
        };
        {
            let block = self.blocks.get_unchecked_mut(&block_ptr);
            if let Some((ref new_prev_ptr, ref prev_size)) = prev_info {
                block.prev = new_prev_ptr.clone();
                block.size += prev_size.clone();
                block.address -= prev_size.clone();
            }
            if let Some((ref new_next_ptr, ref next_size)) = next_info {
                block.next = new_next_ptr.clone();
                block.size += next_size.clone();
            }
        }

        if prev_info.is_some() {
            self.l1.unlink(&mut self.blocks, prev_ptr.clone().unwrap());
            self.blocks.remove_unchecked(&prev_ptr.unwrap());
        }
        if next_info.is_some() {
            self.l1.unlink(&mut self.blocks, next_ptr.clone().unwrap());
            self.blocks.remove_unchecked(&next_ptr.unwrap());
        }

        if let Some((Some(new_prev_ptr), _)) = prev_info {
            let block = self.blocks.get_unchecked_mut(&new_prev_ptr);
            block.next = Some(block_ptr.clone());
        }
        if let Some((Some(new_next_ptr), _)) = next_info {
            let block = self.blocks.get_unchecked_mut(&new_next_ptr);
            block.prev = Some(block_ptr.clone());
        }

        self.l1.link(&mut self.blocks, block_ptr);
    }

    #[doc(hidden)]
    pub unsafe fn test_integrity(&mut self, root_ptr: &TlsfRegion<P>)
    where
        P: fmt::Debug + PartialEq,
    {
        // Find the physically first block
        let mut first_ptr = root_ptr.0.clone();
        while self.blocks.get_unchecked(&first_ptr).prev.is_some() {
            first_ptr = self.blocks.get_unchecked(&first_ptr).prev.clone().unwrap();
        }

        let dump = || {
            use std::fmt::Write;
            let mut s = String::new();
            let mut cur_ptr = first_ptr.clone();
            loop {
                let cur = self.blocks.get_unchecked(&cur_ptr);
                let next_ptr = cur.next.clone();
                write!(
                    &mut s,
                    "{:?} - [{:?}, {:?}] - {:?}\n",
                    cur.prev,
                    cur_ptr,
                    cur.state,
                    cur.next
                ).unwrap();
                if let Some(next_ptr) = next_ptr {
                    cur_ptr = next_ptr;
                } else {
                    break;
                }
            }
            s
        };

        // scan every block and check the physical connections
        let mut cur_ptr = first_ptr.clone();
        let mut addr = Zero::zero();
        loop {
            let cur = self.blocks.get_unchecked(&cur_ptr);
            assert_eq!(
                cur.address,
                addr,
                "[{:?}].prev ({:?}) should be {:?}. Dump: \n{}",
                cur_ptr,
                &cur.address,
                &addr,
                dump()
            );
            addr += cur.size.clone();

            let next_ptr = cur.next.clone();
            if let Some(next_ptr) = next_ptr {
                let next = self.blocks.get_unchecked(&next_ptr);
                assert_eq!(
                    next.prev,
                    Some(cur_ptr.clone()),
                    "[{:?}].prev ({:?}) should be {:?}. Dump: \n{}",
                    next_ptr,
                    next.prev,
                    cur_ptr,
                    dump()
                );
                assert!(
                    next.state.is_used() || cur.state.is_used(),
                    "[{:?}].state and [{:?}].state must not be Free at the same time. Dump: \n{}",
                    next_ptr,
                    cur_ptr,
                    dump()
                );
                cur_ptr = next_ptr;
            } else {
                break;
            }
        }
        assert_eq!(
            self.size,
            addr,
            "self.size ({:?}) should be {:?}. Dump: \n{}",
            &self.size,
            &addr,
            dump()
        );
    }
}

impl<T, P, A> Tlsf<T, A, P>
where
    T: BinaryUInteger,
    A: UnsafeArena<TlsfBlock<T, P>, Ptr = P>
        + UnsafeArenaWithMembershipCheck<TlsfBlock<T, P>>,
    P: Clone + Default + PartialEq + Eq + fmt::Debug,
{
    /// Deallocate the specified region.
    ///
    /// Returns `Err(r)` if `r` does not originate from the same instance of `Tlsf`.
    pub fn dealloc(&mut self, r: TlsfRegion<P>) -> Result<(), TlsfRegion<P>> {
        unsafe {
            if self.blocks.contains_unchecked(&r.0) {
                Ok(self.dealloc_unchecked(r))
            } else {
                Err(r)
            }
        }
    }
}

impl<T, P, A> Tlsf<T, A, P>
where
    T: BinaryUInteger,
    A: UnsafeArena<TlsfBlock<T, P>, Ptr = P> + SafeArena<TlsfBlock<T, P>>,
    P: Clone + Default + PartialEq + Eq + fmt::Debug,
{
    /// Deallocate the specified region.
    ///
    /// `r` must originate from the same instance of `Tlsf`. Otherwise, `Tlsf`
    /// enters an inconsistent state and possibly panics, but does not cause an
    /// undefined behavior.
    pub fn dealloc_relaxed(&mut self, r: TlsfRegion<P>) {
        unsafe { self.dealloc_unchecked(r) }
    }
}

impl<T: BinaryUInteger, P> TlsfBlock<T, P> {
    /// Return whether the requested region can fit in this space (assuming it
    /// is free).
    ///
    /// The returned value is the size of padding required to meet the
    /// alignment requirement. `None` if it cannot fit.
    fn can_fit(&self, size: &T, align_bits: u32) -> Option<T> {
        if align_bits == 0 {
            if size <= &self.size {
                Some(Zero::zero())
            } else {
                None
            }
        } else {
            let start = self.address.clone().checked_ceil_fix(align_bits);
            let end_block = self.address.clone() + self.size.clone();
            if let Some(start) = start {
                if start < end_block && size <= &(end_block.clone() - start.clone()) {
                    Some(start - self.address.clone())
                } else {
                    None
                }
            } else {
                start
            }
        }
    }
}

impl<T: BinaryUInteger, P: Clone + Default + PartialEq + Eq + fmt::Debug> TlsfL1<T, P> {
    /// Constructs `TlsfL1`.
    fn new(size: &T) -> Self {
        assert!(size > &Zero::zero());

        let size_m1 = size.clone() - One::one();
        let num_l2s = T::max_digits().saturating_sub(LOG2_L2_SIZE + size_m1.leading_zeros()) + 1;

        Self {
            l1: vec![
                TlsfL2 {
                    bitmap: Zero::zero(),
                    l2: [
                // L2_SIZE elements
                P::default(),
                P::default(),
                P::default(),
                P::default(),
                P::default(),
                P::default(),
                P::default(),
                P::default(),
                P::default(),
                P::default(),
                P::default(),
                P::default(),
                P::default(),
                P::default(),
                P::default(),
                P::default(),
            ],
                };
                num_l2s as usize
            ],
            bitmap: Zero::zero(),
            entire: None,
        }
    }

    /// Compute the first and second level table index for a given size of free
    /// space.
    fn map_size(&self, size: &T) -> (u32, u32) {
        let l1_index = T::max_digits().saturating_sub(LOG2_L2_SIZE + size.leading_zeros());
        let min_bit_index = l1_index.saturating_sub(1);
        let l2_index = size.extract_u32(min_bit_index..min_bit_index + LOG2_L2_SIZE);
        (l1_index, l2_index)
    }

    /// Search a free block at least as large as `size` with the alignment
    /// requirement `1 << align_bits`.
    ///
    /// The result can be one of the following:
    ///
    ///  - `None`: No suitable block was found.
    ///  - `Some((position, block_ptr, pad)):  A suitable block was found. `position` is either of:
    ///      - `Some((l1, l2))`: `block_ptr` is the head of the free space list at the position `(l1, l2)`.
    ///      - `None`: `block_ptr` is `self.entire`.
    ///
    /// `size` must be less than or equal to the size of the heap.
    unsafe fn search_suitable<A: UnsafeArena<TlsfBlock<T, P>, Ptr = P>>(
        &self,
        blocks: &mut A,
        size: &T,
        align_bits: u32,
    ) -> Option<(Option<(u32, u32)>, P, T)> {
        if let Some(ref entire) = self.entire {
            return Some((None, entire.clone(), Zero::zero()));
        }

        let (l1_first, l2_first) = self.map_size(size);
        if self.bitmap.get_bit(l1_first) {
            let ref l2t: TlsfL2<P> = self.l1[l1_first as usize];
            if l2t.bitmap.get_bit(l2_first) {
                // Found a free block in the same bucket.
                let block_ptr = l2t.l2[l2_first as usize].clone();
                let block = blocks.get_unchecked(&block_ptr);
                if let Some(pad) = block.can_fit(size, align_bits) {
                    return Some((Some((l1_first, l2_first)), block_ptr, pad));
                }
            }

            // Search the same second level table.
            let l2 = l2t.bitmap.bit_scan_forward(l2_first + 1);
            if l2 != TlsfL2Bitmap::max_digits() {
                // Found one
                let block_ptr = l2t.l2[l2 as usize].clone();
                let can_fit = if align_bits == 0 {
                    Some(Zero::zero())
                } else {
                    blocks.get_unchecked(&block_ptr).can_fit(size, align_bits)
                };
                if let Some(pad) = can_fit {
                    if align_bits == 0 {
                        debug_assert!(
                            blocks
                                .get_unchecked(&block_ptr)
                                .can_fit(size, align_bits)
                                .is_some()
                        );
                    }
                    return Some((Some((l1_first, l2)), block_ptr, pad));
                }
            }
        }

        let mut l1_first = self.bitmap.bit_scan_forward(l1_first + 1);
        let mut l2_first = if l1_first == T::max_digits() {
            return None;
        } else {
            let ref l2t: TlsfL2<P> = self.l1[l1_first as usize];
            let l2 = l2t.bitmap.bit_scan_forward(0);
            debug_assert_ne!(l2, TlsfL2Bitmap::max_digits());
            let block_ptr = l2t.l2[l2 as usize].clone();
            let can_fit = if align_bits == 0 {
                Some(Zero::zero())
            } else {
                blocks.get_unchecked(&block_ptr).can_fit(size, align_bits)
            };
            if let Some(pad) = can_fit {
                if align_bits == 0 {
                    debug_assert!(
                        blocks
                            .get_unchecked(&block_ptr)
                            .can_fit(size, align_bits)
                            .is_some()
                    );
                }
                return Some((Some((l1_first, l2)), block_ptr, pad));
            }
            l2
        };

        // For aligned allocations, there are cases where no free space that can
        // satisfy the alignment requirement even if the size requirement is met.
        // We need to check more free lists.
        //
        // The code below should be unreachable for allocations without an
        // alignment requirement.
        debug_assert_ne!(align_bits, 0);

        // FIXME: add explanation
        let worst_size = size.ref_saturating_add(T::ones(0..align_bits));
        let (l1_worst, l2_worst) = self.map_size(&worst_size);
        while (l1_first, l2_first) < (l1_worst, l2_worst) {
            // Determine the next search start position
            l2_first += 1;
            if l2_first >= TlsfL2Bitmap::max_digits() {
                l1_first = self.bitmap.bit_scan_forward(l1_first + 1);
                if l1_first == T::max_digits() {
                    return None;
                }
                l2_first = 0;
            }

            let ref l2t: TlsfL2<P> = self.l1[l1_first as usize];
            let l2 = l2t.bitmap.bit_scan_forward(l2_first);
            if l2 == TlsfL2Bitmap::max_digits() {
                l2_first = l2;
                continue;
            }
            let block_ptr = l2t.l2[l2 as usize].clone();
            if let Some(pad) = blocks.get_unchecked(&block_ptr).can_fit(size, align_bits) {
                return Some((Some((l1_first, l2)), block_ptr, pad));
            } else {
                l2_first = l2;
            }
        }

        None
    }

    /// Remove the given block from the free space list.
    unsafe fn unlink<A: UnsafeArena<TlsfBlock<T, P>, Ptr = P>>(
        &mut self,
        blocks: &mut A,
        block_ptr: P,
    ) {
        let (l1, l2) = self.map_size(&blocks.get_unchecked(&block_ptr).size);
        if l1 == self.l1.len() as u32 {
            self.entire = None;
        } else {
            {
                debug_assert!(self.bitmap.get_bit(l1));
                debug_assert!(
                    self.l1[l1 as usize].bitmap.get_bit(l2),
                    "L2 bitmap 0b{:b} has not bit {} set.",
                    &self.l1[l1 as usize].bitmap,
                    l2
                );
                if self.l1[l1 as usize].l2[l2 as usize] == block_ptr {
                    return self.unlink_head(blocks, block_ptr, Some((l1, l2)));
                }
            }

            // Retrieve the neighboring blocks (in the free space list)
            let (prev_ptr, o_next_ptr) = {
                let block = blocks.get_unchecked(&block_ptr);
                if let TlsfBlockState::Free {
                    prev_free: Some(ref prev_free),
                    ref next_free,
                } = block.state
                {
                    (prev_free.clone(), next_free.clone())
                } else {
                    unreachable!()
                }
            };

            // Unlink the current block
            if let Some(ref next_ptr) = o_next_ptr {
                let mut next_block = blocks.get_unchecked_mut(next_ptr);
                if let TlsfBlockState::Free { ref mut prev_free, .. } = next_block.state {
                    debug_assert_eq!(*prev_free, Some(block_ptr.clone()));
                    *prev_free = Some(prev_ptr.clone());
                } else {
                    unreachable!()
                }
            }

            {
                let prev_block = blocks.get_unchecked_mut(&prev_ptr);
                if let TlsfBlockState::Free { ref mut next_free, .. } = prev_block.state {
                    debug_assert_eq!(*next_free, Some(block_ptr.clone()));
                    *next_free = o_next_ptr;
                } else {
                    unreachable!()
                }
            }
        }
    }

    /// Remove the given block from the free space list.
    ///
    /// `block_ptr` must be the head of the free space list specified by `position`.
    /// `block_ptr` returned by `search_suitable` always satisfies this condition,
    /// supposing no intervening modification was done.
    unsafe fn unlink_head<A: UnsafeArena<TlsfBlock<T, P>, Ptr = P>>(
        &mut self,
        blocks: &mut A,
        block_ptr: P,
        position: Option<(u32, u32)>,
    ) {
        if let Some((l1, l2)) = position {
            let ref mut l2t: TlsfL2<P> = self.l1[l1 as usize];

            debug_assert!(self.bitmap.get_bit(l1));
            debug_assert!(
                l2t.bitmap.get_bit(l2),
                "L2 bitmap 0b{:b} has not bit {} set.",
                &l2t.bitmap,
                l2
            );
            debug_assert_eq!(block_ptr, l2t.l2[l2 as usize]);

            let next_block_ptr = {
                let block = blocks.get_unchecked(&block_ptr);
                if let TlsfBlockState::Free { ref next_free, .. } = block.state {
                    next_free.clone()
                } else {
                    unreachable!()
                }
            };

            if let Some(next_block_ptr) = next_block_ptr {
                let next_block = blocks.get_unchecked_mut(&next_block_ptr);
                if let TlsfBlockState::Free { ref mut prev_free, .. } = next_block.state {
                    debug_assert_eq!(*prev_free, Some(block_ptr));
                    *prev_free = None;
                } else {
                    unreachable!()
                }

                l2t.l2[l2 as usize] = next_block_ptr;
            } else {
                l2t.bitmap.clear_bit(l2);
                if l2t.bitmap == Zero::zero() {
                    self.bitmap.clear_bit(l1);
                }

                // don't care about the value of `l2t.l2[l2 as usize]`
            }

        } else {
            debug_assert_eq!(Some(block_ptr), self.entire);
            self.entire = None;
        }
    }

    /// Insert the given block to a free space list.
    ///
    /// `block_ptr` must point a valid `TlsfBlock` in `blocks`.
    /// The given block's `TlsfBlock::state` will be overwritten with a new
    /// `TlsfBlockState::Free` value.
    unsafe fn link<A>(&mut self, blocks: &mut A, block_ptr: P)
    where
        A: UnsafeArena<TlsfBlock<T, P>, Ptr = P>,
    {
        let (l1, l2) = self.map_size(&blocks.get_unchecked(&block_ptr).size);
        if l1 == self.l1.len() as u32 {
            self.entire = Some(block_ptr);
        } else {
            let ref mut l2t: TlsfL2<P> = self.l1[l1 as usize];

            // Update bitmaps
            let head_valid = l2t.bitmap.get_bit(l2);
            l2t.bitmap.set_bit(l2);
            self.bitmap.set_bit(l1);

            // Link the given block to the list
            let head = &mut l2t.l2[l2 as usize];

            {
                let block = blocks.get_unchecked_mut(&block_ptr);
                block.state = TlsfBlockState::Free {
                    prev_free: None,
                    next_free: if head_valid { Some(head.clone()) } else { None },
                };
            }
            if head_valid {
                let next_block = blocks.get_unchecked_mut(head);
                if let TlsfBlockState::Free { ref mut prev_free, .. } = next_block.state {
                    debug_assert!(prev_free.is_none());
                    *prev_free = Some(block_ptr.clone());
                } else {
                    unreachable!()
                }
            }

            *head = block_ptr;
        }
    }
}

#[test]
fn num_l2s() {
    for i in 1..L2_SIZE {
        let l1 = TlsfL1::<_, u32>::new(&(i as u32));
        assert_eq!(l1.l1.len(), 1);
    }
    for k in 0..4 {
        let i = L2_SIZE << k;
        let l1 = TlsfL1::<_, u32>::new(&i);
        assert_eq!(l1.l1.len(), k + 1);
    }
}