1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
// Copyright 2017 Philipp Oppermann. See the README.md
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Provides types for the Interrupt Descriptor Table and its entries.
//!
//! # For the builds without the `abi_x86_interrupt` feature
//! The following types are opaque and non-constructable instead of function pointers.
//!
//! - [`DivergingHandlerFunc`]
//! - [`DivergingHandlerFuncWithErrCode`]
//! - [`HandlerFunc`]
//! - [`HandlerFuncWithErrCode`]
//! - [`PageFaultHandlerFunc`]
//!
//! These types are defined for the compatibility with the Nightly Rust build.

use crate::{PrivilegeLevel, VirtAddr};
use bit_field::BitField;
use bitflags::bitflags;
use core::fmt;
use core::marker::PhantomData;
use core::ops::Bound::{Excluded, Included, Unbounded};
use core::ops::{Deref, Index, IndexMut, RangeBounds};
use volatile::Volatile;

/// An Interrupt Descriptor Table with 256 entries.
///
/// The first 32 entries are used for CPU exceptions. These entries can be either accessed through
/// fields on this struct or through an index operation, e.g. `idt[0]` returns the
/// first entry, the entry for the `divide_error` exception. Note that the index access is
/// not possible for entries for which an error code is pushed.
///
/// The remaining entries are used for interrupts. They can be accesed through index
/// operations on the idt, e.g. `idt[32]` returns the first interrupt entry, which is the 32nd IDT
/// entry).
///
///
/// The field descriptions are taken from the
/// [AMD64 manual volume 2](https://support.amd.com/TechDocs/24593.pdf)
/// (with slight modifications).
#[derive(Clone, Debug)]
#[repr(C)]
#[repr(align(16))]
pub struct InterruptDescriptorTable {
    /// A divide error (`#DE`) occurs when the denominator of a DIV instruction or
    /// an IDIV instruction is 0. A `#DE` also occurs if the result is too large to be
    /// represented in the destination.
    ///
    /// The saved instruction pointer points to the instruction that caused the `#DE`.
    ///
    /// The vector number of the `#DE` exception is 0.
    pub divide_error: Entry<HandlerFunc>,

    /// When the debug-exception mechanism is enabled, a `#DB` exception can occur under any
    /// of the following circumstances:
    ///
    /// <details>
    ///
    /// - Instruction execution.
    /// - Instruction single stepping.
    /// - Data read.
    /// - Data write.
    /// - I/O read.
    /// - I/O write.
    /// - Task switch.
    /// - Debug-register access, or general detect fault (debug register access when DR7.GD=1).
    /// - Executing the INT1 instruction (opcode 0F1h).
    ///
    /// </details>
    ///
    /// `#DB` conditions are enabled and disabled using the debug-control register, `DR7`
    /// and `RFLAGS.TF`.
    ///
    /// In the following cases, the saved instruction pointer points to the instruction that
    /// caused the `#DB`:
    ///
    /// - Instruction execution.
    /// - Invalid debug-register access, or general detect.
    ///
    /// In all other cases, the instruction that caused the `#DB` is completed, and the saved
    /// instruction pointer points to the instruction after the one that caused the `#DB`.
    ///
    /// The vector number of the `#DB` exception is 1.
    pub debug: Entry<HandlerFunc>,

    /// An non maskable interrupt exception (NMI) occurs as a result of system logic
    /// signaling a non-maskable interrupt to the processor.
    ///
    /// The processor recognizes an NMI at an instruction boundary.
    /// The saved instruction pointer points to the instruction immediately following the
    /// boundary where the NMI was recognized.
    ///
    /// The vector number of the NMI exception is 2.
    pub non_maskable_interrupt: Entry<HandlerFunc>,

    /// A breakpoint (`#BP`) exception occurs when an `INT3` instruction is executed. The
    /// `INT3` is normally used by debug software to set instruction breakpoints by replacing
    ///
    /// The saved instruction pointer points to the byte after the `INT3` instruction.
    ///
    /// The vector number of the `#BP` exception is 3.
    pub breakpoint: Entry<HandlerFunc>,

    /// An overflow exception (`#OF`) occurs as a result of executing an `INTO` instruction
    /// while the overflow bit in `RFLAGS` is set to 1.
    ///
    /// The saved instruction pointer points to the instruction following the `INTO`
    /// instruction that caused the `#OF`.
    ///
    /// The vector number of the `#OF` exception is 4.
    pub overflow: Entry<HandlerFunc>,

    /// A bound-range exception (`#BR`) exception can occur as a result of executing
    /// the `BOUND` instruction. The `BOUND` instruction compares an array index (first
    /// operand) with the lower bounds and upper bounds of an array (second operand).
    /// If the array index is not within the array boundary, the `#BR` occurs.
    ///
    /// The saved instruction pointer points to the `BOUND` instruction that caused the `#BR`.
    ///
    /// The vector number of the `#BR` exception is 5.
    pub bound_range_exceeded: Entry<HandlerFunc>,

    /// An invalid opcode exception (`#UD`) occurs when an attempt is made to execute an
    /// invalid or undefined opcode. The validity of an opcode often depends on the
    /// processor operating mode.
    ///
    /// <details><summary>A `#UD` occurs under the following conditions:</summary>
    ///
    /// - Execution of any reserved or undefined opcode in any mode.
    /// - Execution of the `UD2` instruction.
    /// - Use of the `LOCK` prefix on an instruction that cannot be locked.
    /// - Use of the `LOCK` prefix on a lockable instruction with a non-memory target location.
    /// - Execution of an instruction with an invalid-operand type.
    /// - Execution of the `SYSENTER` or `SYSEXIT` instructions in long mode.
    /// - Execution of any of the following instructions in 64-bit mode: `AAA`, `AAD`,
    ///   `AAM`, `AAS`, `BOUND`, `CALL` (opcode 9A), `DAA`, `DAS`, `DEC`, `INC`, `INTO`,
    ///   `JMP` (opcode EA), `LDS`, `LES`, `POP` (`DS`, `ES`, `SS`), `POPA`, `PUSH` (`CS`,
    ///   `DS`, `ES`, `SS`), `PUSHA`, `SALC`.
    /// - Execution of the `ARPL`, `LAR`, `LLDT`, `LSL`, `LTR`, `SLDT`, `STR`, `VERR`, or
    ///   `VERW` instructions when protected mode is not enabled, or when virtual-8086 mode
    ///   is enabled.
    /// - Execution of any legacy SSE instruction when `CR4.OSFXSR` is cleared to 0.
    /// - Execution of any SSE instruction (uses `YMM`/`XMM` registers), or 64-bit media
    /// instruction (uses `MMXTM` registers) when `CR0.EM` = 1.
    /// - Execution of any SSE floating-point instruction (uses `YMM`/`XMM` registers) that
    /// causes a numeric exception when `CR4.OSXMMEXCPT` = 0.
    /// - Use of the `DR4` or `DR5` debug registers when `CR4.DE` = 1.
    /// - Execution of `RSM` when not in `SMM` mode.
    ///
    /// </details>
    ///
    /// The saved instruction pointer points to the instruction that caused the `#UD`.
    ///
    /// The vector number of the `#UD` exception is 6.
    pub invalid_opcode: Entry<HandlerFunc>,

    /// A device not available exception (`#NM`) occurs under any of the following conditions:
    ///
    /// <details>
    ///
    /// - An `FWAIT`/`WAIT` instruction is executed when `CR0.MP=1` and `CR0.TS=1`.
    /// - Any x87 instruction other than `FWAIT` is executed when `CR0.EM=1`.
    /// - Any x87 instruction is executed when `CR0.TS=1`. The `CR0.MP` bit controls whether the
    ///   `FWAIT`/`WAIT` instruction causes an `#NM` exception when `TS=1`.
    /// - Any 128-bit or 64-bit media instruction when `CR0.TS=1`.
    ///
    /// </details>
    ///
    /// The saved instruction pointer points to the instruction that caused the `#NM`.
    ///
    /// The vector number of the `#NM` exception is 7.
    pub device_not_available: Entry<HandlerFunc>,

    /// A double fault (`#DF`) exception can occur when a second exception occurs during
    /// the handling of a prior (first) exception or interrupt handler.
    ///
    /// <details>
    ///
    /// Usually, the first and second exceptions can be handled sequentially without
    /// resulting in a `#DF`. In this case, the first exception is considered _benign_, as
    /// it does not harm the ability of the processor to handle the second exception. In some
    /// cases, however, the first exception adversely affects the ability of the processor to
    /// handle the second exception. These exceptions contribute to the occurrence of a `#DF`,
    /// and are called _contributory exceptions_. The following exceptions are contributory:
    ///
    /// - Invalid-TSS Exception
    /// - Segment-Not-Present Exception
    /// - Stack Exception
    /// - General-Protection Exception
    ///
    /// A double-fault exception occurs in the following cases:
    ///
    /// - If a contributory exception is followed by another contributory exception.
    /// - If a divide-by-zero exception is followed by a contributory exception.
    /// - If a page  fault is followed by another page fault or a contributory exception.
    ///
    /// If a third interrupting event occurs while transferring control to the `#DF` handler,
    /// the processor shuts down.
    ///
    /// </details>
    ///
    /// The returned error code is always zero. The saved instruction pointer is undefined,
    /// and the program cannot be restarted.
    ///
    /// The vector number of the `#DF` exception is 8.
    pub double_fault: Entry<DivergingHandlerFuncWithErrCode>,

    /// This interrupt vector is reserved. It is for a discontinued exception originally used
    /// by processors that supported external x87-instruction coprocessors. On those processors,
    /// the exception condition is caused by an invalid-segment or invalid-page access on an
    /// x87-instruction coprocessor-instruction operand. On current processors, this condition
    /// causes a general-protection exception to occur.
    coprocessor_segment_overrun: Entry<HandlerFunc>,

    /// An invalid TSS exception (`#TS`) occurs only as a result of a control transfer through
    /// a gate descriptor that results in an invalid stack-segment reference using an `SS`
    /// selector in the TSS.
    ///
    /// The returned error code is the `SS` segment selector. The saved instruction pointer
    /// points to the control-transfer instruction that caused the `#TS`.
    ///
    /// The vector number of the `#TS` exception is 10.
    pub invalid_tss: Entry<HandlerFuncWithErrCode>,

    /// An segment-not-present exception (`#NP`) occurs when an attempt is made to load a
    /// segment or gate with a clear present bit.
    ///
    /// The returned error code is the segment-selector index of the segment descriptor
    /// causing the `#NP` exception. The saved instruction pointer points to the instruction
    /// that loaded the segment selector resulting in the `#NP`.
    ///
    /// The vector number of the `#NP` exception is 11.
    pub segment_not_present: Entry<HandlerFuncWithErrCode>,

    /// An stack segment exception (`#SS`) can occur in the following situations:
    ///
    /// - Implied stack references in which the stack address is not in canonical
    ///   form. Implied stack references include all push and pop instructions, and any
    ///   instruction using `RSP` or `RBP` as a base register.
    /// - Attempting to load a stack-segment selector that references a segment descriptor
    ///   containing a clear present bit.
    /// - Any stack access that fails the stack-limit check.
    ///
    /// The returned error code depends on the cause of the `#SS`. If the cause is a cleared
    /// present bit, the error code is the corresponding segment selector. Otherwise, the
    /// error code is zero. The saved instruction pointer points to the instruction that
    /// caused the `#SS`.
    ///
    /// The vector number of the `#NP` exception is 12.
    pub stack_segment_fault: Entry<HandlerFuncWithErrCode>,

    /// A general protection fault (`#GP`) can occur in various situations. Common causes include:
    ///
    /// - Executing a privileged instruction while `CPL > 0`.
    /// - Writing a 1 into any register field that is reserved, must be zero (MBZ).
    /// - Attempting to execute an SSE instruction specifying an unaligned memory operand.
    /// - Loading a non-canonical base address into the `GDTR` or `IDTR`.
    /// - Using WRMSR to write a read-only MSR.
    /// - Any long-mode consistency-check violation.
    ///
    /// The returned error code is a segment selector, if the cause of the `#GP` is
    /// segment-related, and zero otherwise. The saved instruction pointer points to
    /// the instruction that caused the `#GP`.
    ///
    /// The vector number of the `#GP` exception is 13.
    pub general_protection_fault: Entry<HandlerFuncWithErrCode>,

    /// A page fault (`#PF`) can occur during a memory access in any of the following situations:
    ///
    /// - A page-translation-table entry or physical page involved in translating the memory
    ///   access is not present in physical memory. This is indicated by a cleared present
    ///   bit in the translation-table entry.
    /// - An attempt is made by the processor to load the instruction TLB with a translation
    ///   for a non-executable page.
    /// - The memory access fails the paging-protection checks (user/supervisor, read/write,
    ///   or both).
    /// - A reserved bit in one of the page-translation-table entries is set to 1. A `#PF`
    ///   occurs for this reason only when `CR4.PSE=1` or `CR4.PAE=1`.
    ///
    /// The virtual (linear) address that caused the `#PF` is stored in the `CR2` register.
    /// The saved instruction pointer points to the instruction that caused the `#PF`.
    ///
    /// The page-fault error code is described by the
    /// [`PageFaultErrorCode`](struct.PageFaultErrorCode.html) struct.
    ///
    /// The vector number of the `#PF` exception is 14.
    pub page_fault: Entry<PageFaultHandlerFunc>,

    /// vector nr. 15
    reserved_1: Entry<HandlerFunc>,

    /// The x87 Floating-Point Exception-Pending exception (`#MF`) is used to handle unmasked x87
    /// floating-point exceptions. In 64-bit mode, the x87 floating point unit is not used
    /// anymore, so this exception is only relevant when executing programs in the 32-bit
    /// compatibility mode.
    ///
    /// The vector number of the `#MF` exception is 16.
    pub x87_floating_point: Entry<HandlerFunc>,

    /// An alignment check exception (`#AC`) occurs when an unaligned-memory data reference
    /// is performed while alignment checking is enabled. An `#AC` can occur only when CPL=3.
    ///
    /// The returned error code is always zero. The saved instruction pointer points to the
    /// instruction that caused the `#AC`.
    ///
    /// The vector number of the `#AC` exception is 17.
    pub alignment_check: Entry<HandlerFuncWithErrCode>,

    /// The machine check exception (`#MC`) is model specific. Processor implementations
    /// are not required to support the `#MC` exception, and those implementations that do
    /// support `#MC` can vary in how the `#MC` exception mechanism works.
    ///
    /// There is no reliable way to restart the program.
    ///
    /// The vector number of the `#MC` exception is 18.
    pub machine_check: Entry<DivergingHandlerFunc>,

    /// The SIMD Floating-Point Exception (`#XF`) is used to handle unmasked SSE
    /// floating-point exceptions. The SSE floating-point exceptions reported by
    /// the `#XF` exception are (including mnemonics):
    ///
    /// - IE: Invalid-operation exception (also called #I).
    /// - DE: Denormalized-operand exception (also called #D).
    /// - ZE: Zero-divide exception (also called #Z).
    /// - OE: Overflow exception (also called #O).
    /// - UE: Underflow exception (also called #U).
    /// - PE: Precision exception (also called #P or inexact-result exception).
    ///
    /// The saved instruction pointer points to the instruction that caused the `#XF`.
    ///
    /// The vector number of the `#XF` exception is 19.
    pub simd_floating_point: Entry<HandlerFunc>,

    /// vector nr. 20
    pub virtualization: Entry<HandlerFunc>,

    /// vector nr. 21-29
    reserved_2: [Entry<HandlerFunc>; 9],

    /// The Security Exception (`#SX`) signals security-sensitive events that occur while
    /// executing the VMM, in the form of an exception so that the VMM may take appropriate
    /// action. (A VMM would typically intercept comparable sensitive events in the guest.)
    /// In the current implementation, the only use of the `#SX` is to redirect external INITs
    /// into an exception so that the VMM may — among other possibilities.
    ///
    /// The only error code currently defined is 1, and indicates redirection of INIT has occurred.
    ///
    /// The vector number of the ``#SX`` exception is 30.
    pub security_exception: Entry<HandlerFuncWithErrCode>,

    /// vector nr. 31
    reserved_3: Entry<HandlerFunc>,

    /// User-defined interrupts can be initiated either by system logic or software. They occur
    /// when:
    ///
    /// - System logic signals an external interrupt request to the processor. The signaling
    ///   mechanism and the method of communicating the interrupt vector to the processor are
    ///   implementation dependent.
    /// - Software executes an `INTn` instruction. The `INTn` instruction operand provides
    ///   the interrupt vector number.
    ///
    /// Both methods can be used to initiate an interrupt into vectors 0 through 255. However,
    /// because vectors 0 through 31 are defined or reserved by the AMD64 architecture,
    /// software should not use vectors in this range for purposes other than their defined use.
    ///
    /// The saved instruction pointer depends on the interrupt source:
    ///
    /// - External interrupts are recognized on instruction boundaries. The saved instruction
    ///   pointer points to the instruction immediately following the boundary where the
    ///   external interrupt was recognized.
    /// - If the interrupt occurs as a result of executing the INTn instruction, the saved
    ///   instruction pointer points to the instruction after the INTn.
    interrupts: [Entry<HandlerFunc>; 256 - 32],
}

impl InterruptDescriptorTable {
    const_fn! {
        /// Creates a new IDT filled with non-present entries.
        #[inline]
        pub fn new() -> InterruptDescriptorTable {
            InterruptDescriptorTable {
                divide_error: Entry::missing(),
                debug: Entry::missing(),
                non_maskable_interrupt: Entry::missing(),
                breakpoint: Entry::missing(),
                overflow: Entry::missing(),
                bound_range_exceeded: Entry::missing(),
                invalid_opcode: Entry::missing(),
                device_not_available: Entry::missing(),
                double_fault: Entry::missing(),
                coprocessor_segment_overrun: Entry::missing(),
                invalid_tss: Entry::missing(),
                segment_not_present: Entry::missing(),
                stack_segment_fault: Entry::missing(),
                general_protection_fault: Entry::missing(),
                page_fault: Entry::missing(),
                reserved_1: Entry::missing(),
                x87_floating_point: Entry::missing(),
                alignment_check: Entry::missing(),
                machine_check: Entry::missing(),
                simd_floating_point: Entry::missing(),
                virtualization: Entry::missing(),
                reserved_2: [Entry::missing(); 9],
                security_exception: Entry::missing(),
                reserved_3: Entry::missing(),
                interrupts: [Entry::missing(); 256 - 32],
            }
        }
    }

    /// Resets all entries of this IDT in place.
    #[inline]
    pub fn reset(&mut self) {
        *self = Self::new();
    }

    /// Loads the IDT in the CPU using the `lidt` command.
    #[cfg(feature = "instructions")]
    #[inline]
    pub fn load(&'static self) {
        unsafe { self.load_unsafe() }
    }

    /// Loads the IDT in the CPU using the `lidt` command.
    ///
    /// # Safety
    ///
    /// As long as it is the active IDT, you must ensure that:
    ///
    /// - `self` is never destroyed.
    /// - `self` always stays at the same memory location. It is recommended to wrap it in
    /// a `Box`.
    ///
    #[cfg(feature = "instructions")]
    #[inline]
    pub unsafe fn load_unsafe(&self) {
        use crate::instructions::tables::lidt;
        lidt(&self.pointer());
    }

    /// Creates the descriptor pointer for this table. This pointer can only be
    /// safely used if the table is never modified or destroyed while in use.
    #[cfg(feature = "instructions")]
    fn pointer(&self) -> crate::structures::DescriptorTablePointer {
        use core::mem::size_of;
        crate::structures::DescriptorTablePointer {
            base: VirtAddr::new(self as *const _ as u64),
            limit: (size_of::<Self>() - 1) as u16,
        }
    }

    /// Returns a normalized and ranged check slice range from a RangeBounds trait object
    ///
    /// Panics if range is outside the range of user interrupts (i.e. greater than 255) or if the entry is an
    /// exception
    fn condition_slice_bounds(&self, bounds: impl RangeBounds<usize>) -> (usize, usize) {
        let lower_idx = match bounds.start_bound() {
            Included(start) => *start,
            Excluded(start) => *start + 1,
            Unbounded => 0,
        };
        let upper_idx = match bounds.end_bound() {
            Included(end) => *end + 1,
            Excluded(end) => *end,
            Unbounded => 256,
        };

        if lower_idx > 256 || upper_idx > 256 {
            panic!("Index out of range [{}..{}]", lower_idx, upper_idx);
        }
        if lower_idx < 32 {
            panic!("Cannot return slice from traps, faults, and exception handlers");
        }
        (lower_idx, upper_idx)
    }

    /// Returns slice of IDT entries with the specified range.
    ///
    /// Panics if range is outside the range of user interrupts (i.e. greater than 255) or if the entry is an
    /// exception
    #[inline]
    pub fn slice(&self, bounds: impl RangeBounds<usize>) -> &[Entry<HandlerFunc>] {
        let (lower_idx, upper_idx) = self.condition_slice_bounds(bounds);
        &self.interrupts[(lower_idx - 32)..(upper_idx - 32)]
    }

    /// Returns a mutable slice of IDT entries with the specified range.
    ///
    /// Panics if range is outside the range of user interrupts (i.e. greater than 255) or if the entry is an
    /// exception
    #[inline]
    pub fn slice_mut(&mut self, bounds: impl RangeBounds<usize>) -> &mut [Entry<HandlerFunc>] {
        let (lower_idx, upper_idx) = self.condition_slice_bounds(bounds);
        &mut self.interrupts[(lower_idx - 32)..(upper_idx - 32)]
    }
}

impl Index<usize> for InterruptDescriptorTable {
    type Output = Entry<HandlerFunc>;

    /// Returns the IDT entry with the specified index.
    ///
    /// Panics if index is outside the IDT (i.e. greater than 255) or if the entry is an
    /// exception that pushes an error code (use the struct fields for accessing these entries).
    #[inline]
    fn index(&self, index: usize) -> &Self::Output {
        match index {
            0 => &self.divide_error,
            1 => &self.debug,
            2 => &self.non_maskable_interrupt,
            3 => &self.breakpoint,
            4 => &self.overflow,
            5 => &self.bound_range_exceeded,
            6 => &self.invalid_opcode,
            7 => &self.device_not_available,
            9 => &self.coprocessor_segment_overrun,
            16 => &self.x87_floating_point,
            19 => &self.simd_floating_point,
            20 => &self.virtualization,
            i @ 32..=255 => &self.interrupts[i - 32],
            i @ 15 | i @ 31 | i @ 21..=29 => panic!("entry {} is reserved", i),
            i @ 8 | i @ 10..=14 | i @ 17 | i @ 30 => {
                panic!("entry {} is an exception with error code", i)
            }
            i @ 18 => panic!("entry {} is an diverging exception (must not return)", i),
            i => panic!("no entry with index {}", i),
        }
    }
}

impl IndexMut<usize> for InterruptDescriptorTable {
    /// Returns a mutable reference to the IDT entry with the specified index.
    ///
    /// Panics if index is outside the IDT (i.e. greater than 255) or if the entry is an
    /// exception that pushes an error code (use the struct fields for accessing these entries).
    #[inline]
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        match index {
            0 => &mut self.divide_error,
            1 => &mut self.debug,
            2 => &mut self.non_maskable_interrupt,
            3 => &mut self.breakpoint,
            4 => &mut self.overflow,
            5 => &mut self.bound_range_exceeded,
            6 => &mut self.invalid_opcode,
            7 => &mut self.device_not_available,
            9 => &mut self.coprocessor_segment_overrun,
            16 => &mut self.x87_floating_point,
            19 => &mut self.simd_floating_point,
            20 => &mut self.virtualization,
            i @ 32..=255 => &mut self.interrupts[i - 32],
            i @ 15 | i @ 31 | i @ 21..=29 => panic!("entry {} is reserved", i),
            i @ 8 | i @ 10..=14 | i @ 17 | i @ 30 => {
                panic!("entry {} is an exception with error code", i)
            }
            i @ 18 => panic!("entry {} is an diverging exception (must not return)", i),
            i => panic!("no entry with index {}", i),
        }
    }
}

/// An Interrupt Descriptor Table entry.
///
/// The generic parameter can either be `HandlerFunc` or `HandlerFuncWithErrCode`, depending
/// on the interrupt vector.
#[derive(Clone, Copy)]
#[repr(C)]
pub struct Entry<F> {
    pointer_low: u16,
    gdt_selector: u16,
    options: EntryOptions,
    pointer_middle: u16,
    pointer_high: u32,
    reserved: u32,
    phantom: PhantomData<F>,
}

impl<T> fmt::Debug for Entry<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Entry")
            .field("handler_addr", &format_args!("{:#x}", self.handler_addr()))
            .field("gdt_selector", &self.gdt_selector)
            .field("options", &self.options)
            .finish()
    }
}

impl<T> PartialEq for Entry<T> {
    fn eq(&self, other: &Self) -> bool {
        self.pointer_low == other.pointer_low
            && self.gdt_selector == other.gdt_selector
            && self.options == other.options
            && self.pointer_middle == other.pointer_middle
            && self.pointer_high == other.pointer_high
            && self.reserved == other.reserved
    }
}

/// A handler function for an interrupt or an exception without error code.
///
/// This type alias is only usable with the `abi_x86_interrupt` feature enabled.
#[cfg(feature = "abi_x86_interrupt")]
pub type HandlerFunc = extern "x86-interrupt" fn(InterruptStackFrame);
/// This type is not usable without the `abi_x86_interrupt` feature.
#[cfg(not(feature = "abi_x86_interrupt"))]
#[derive(Copy, Clone, Debug)]
pub struct HandlerFunc(());

/// A handler function for an exception that pushes an error code.
///
/// This type alias is only usable with the `abi_x86_interrupt` feature enabled.
#[cfg(feature = "abi_x86_interrupt")]
pub type HandlerFuncWithErrCode = extern "x86-interrupt" fn(InterruptStackFrame, error_code: u64);
/// This type is not usable without the `abi_x86_interrupt` feature.
#[cfg(not(feature = "abi_x86_interrupt"))]
#[derive(Copy, Clone, Debug)]
pub struct HandlerFuncWithErrCode(());

/// A page fault handler function that pushes a page fault error code.
///
/// This type alias is only usable with the `abi_x86_interrupt` feature enabled.
#[cfg(feature = "abi_x86_interrupt")]
pub type PageFaultHandlerFunc =
    extern "x86-interrupt" fn(InterruptStackFrame, error_code: PageFaultErrorCode);
/// This type is not usable without the `abi_x86_interrupt` feature.
#[cfg(not(feature = "abi_x86_interrupt"))]
#[derive(Copy, Clone, Debug)]
pub struct PageFaultHandlerFunc(());

/// A handler function that must not return, e.g. for a machine check exception.
///
/// This type alias is only usable with the `abi_x86_interrupt` feature enabled.
#[cfg(feature = "abi_x86_interrupt")]
pub type DivergingHandlerFunc = extern "x86-interrupt" fn(InterruptStackFrame) -> !;
/// This type is not usable without the `abi_x86_interrupt` feature.
#[cfg(not(feature = "abi_x86_interrupt"))]
#[derive(Copy, Clone, Debug)]
pub struct DivergingHandlerFunc(());

/// A handler function with an error code that must not return, e.g. for a double fault exception.
///
/// This type alias is only usable with the `abi_x86_interrupt` feature enabled.
#[cfg(feature = "abi_x86_interrupt")]
pub type DivergingHandlerFuncWithErrCode =
    extern "x86-interrupt" fn(InterruptStackFrame, error_code: u64) -> !;
/// This type is not usable without the `abi_x86_interrupt` feature.
#[cfg(not(feature = "abi_x86_interrupt"))]
#[derive(Copy, Clone, Debug)]
pub struct DivergingHandlerFuncWithErrCode(());

impl<F> Entry<F> {
    /// Creates a non-present IDT entry (but sets the must-be-one bits).
    #[inline]
    pub const fn missing() -> Self {
        Entry {
            gdt_selector: 0,
            pointer_low: 0,
            pointer_middle: 0,
            pointer_high: 0,
            options: EntryOptions::minimal(),
            reserved: 0,
            phantom: PhantomData,
        }
    }

    /// Set the handler address for the IDT entry and sets the present bit.
    ///
    /// For the code selector field, this function uses the code segment selector currently
    /// active in the CPU.
    ///
    /// The function returns a mutable reference to the entry's options that allows
    /// further customization.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `addr` is the address of a valid interrupt handler function,
    /// and the signature of such a function is correct for the entry type.
    #[cfg(feature = "instructions")]
    #[inline]
    pub unsafe fn set_handler_addr(&mut self, addr: VirtAddr) -> &mut EntryOptions {
        use crate::instructions::segmentation::{Segment, CS};

        let addr = addr.as_u64();

        self.pointer_low = addr as u16;
        self.pointer_middle = (addr >> 16) as u16;
        self.pointer_high = (addr >> 32) as u32;

        self.gdt_selector = CS::get_reg().0;

        self.options.set_present(true);
        &mut self.options
    }

    #[inline]
    fn handler_addr(&self) -> u64 {
        self.pointer_low as u64
            | (self.pointer_middle as u64) << 16
            | (self.pointer_high as u64) << 32
    }
}

macro_rules! impl_set_handler_fn {
    ($h:ty) => {
        #[cfg(all(feature = "instructions", feature = "abi_x86_interrupt"))]
        impl Entry<$h> {
            /// Set the handler function for the IDT entry and sets the present bit.
            ///
            /// For the code selector field, this function uses the code segment selector currently
            /// active in the CPU.
            ///
            /// The function returns a mutable reference to the entry's options that allows
            /// further customization.
            ///
            /// This method is only usable with the `abi_x86_interrupt` feature enabled. Without it, the
            /// unsafe [`Entry::set_handler_addr`] method has to be used instead.
            #[inline]
            pub fn set_handler_fn(&mut self, handler: $h) -> &mut EntryOptions {
                let handler = VirtAddr::new(handler as u64);
                unsafe { self.set_handler_addr(handler) }
            }
        }
    };
}

impl_set_handler_fn!(HandlerFunc);
impl_set_handler_fn!(HandlerFuncWithErrCode);
impl_set_handler_fn!(PageFaultHandlerFunc);
impl_set_handler_fn!(DivergingHandlerFunc);
impl_set_handler_fn!(DivergingHandlerFuncWithErrCode);

/// Represents the options field of an IDT entry.
#[repr(transparent)]
#[derive(Clone, Copy, PartialEq)]
pub struct EntryOptions(u16);

impl fmt::Debug for EntryOptions {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("EntryOptions")
            .field(&format_args!("{:#06x}", self.0))
            .finish()
    }
}

impl EntryOptions {
    /// Creates a minimal options field with all the must-be-one bits set.
    #[inline]
    const fn minimal() -> Self {
        EntryOptions(0b1110_0000_0000)
    }

    /// Set or reset the preset bit.
    #[inline]
    pub fn set_present(&mut self, present: bool) -> &mut Self {
        self.0.set_bit(15, present);
        self
    }

    /// Let the CPU disable hardware interrupts when the handler is invoked. By default,
    /// interrupts are disabled on handler invocation.
    #[inline]
    pub fn disable_interrupts(&mut self, disable: bool) -> &mut Self {
        self.0.set_bit(8, !disable);
        self
    }

    /// Set the required privilege level (DPL) for invoking the handler. The DPL can be 0, 1, 2,
    /// or 3, the default is 0. If CPL < DPL, a general protection fault occurs.
    #[inline]
    pub fn set_privilege_level(&mut self, dpl: PrivilegeLevel) -> &mut Self {
        self.0.set_bits(13..15, dpl as u16);
        self
    }

    /// Assigns a Interrupt Stack Table (IST) stack to this handler. The CPU will then always
    /// switch to the specified stack before the handler is invoked. This allows kernels to
    /// recover from corrupt stack pointers (e.g., on kernel stack overflow).
    ///
    /// An IST stack is specified by an IST index between 0 and 6 (inclusive). Using the same
    /// stack for multiple interrupts can be dangerous when nested interrupts are possible.
    ///
    /// This function panics if the index is not in the range 0..7.
    ///
    /// ## Safety
    ///
    /// This function is unsafe because the caller must ensure that the passed stack index is
    /// valid and not used by other interrupts. Otherwise, memory safety violations are possible.
    #[inline]
    pub unsafe fn set_stack_index(&mut self, index: u16) -> &mut Self {
        // The hardware IST index starts at 1, but our software IST index
        // starts at 0. Therefore we need to add 1 here.
        self.0.set_bits(0..3, index + 1);
        self
    }
}

/// Wrapper type for the interrupt stack frame pushed by the CPU.
///
/// This type derefs to an [`InterruptStackFrameValue`], which allows reading the actual values.
///
/// This wrapper type ensures that no accidental modification of the interrupt stack frame
/// occurs, which can cause undefined behavior (see the [`as_mut`](InterruptStackFrame::as_mut)
/// method for more information).
#[repr(C)]
pub struct InterruptStackFrame {
    value: InterruptStackFrameValue,
}

impl InterruptStackFrame {
    /// Gives mutable access to the contents of the interrupt stack frame.
    ///
    /// The `Volatile` wrapper is used because LLVM optimizations remove non-volatile
    /// modifications of the interrupt stack frame.
    ///
    /// ## Safety
    ///
    /// This function is unsafe since modifying the content of the interrupt stack frame
    /// can easily lead to undefined behavior. For example, by writing an invalid value to
    /// the instruction pointer field, the CPU can jump to arbitrary code at the end of the
    /// interrupt.
    ///
    /// Also, it is not fully clear yet whether modifications of the interrupt stack frame are
    /// officially supported by LLVM's x86 interrupt calling convention.
    #[inline]
    pub unsafe fn as_mut(&mut self) -> Volatile<&mut InterruptStackFrameValue> {
        Volatile::new(&mut self.value)
    }
}

impl Deref for InterruptStackFrame {
    type Target = InterruptStackFrameValue;

    #[inline]
    fn deref(&self) -> &Self::Target {
        &self.value
    }
}

impl fmt::Debug for InterruptStackFrame {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.value.fmt(f)
    }
}

/// Represents the interrupt stack frame pushed by the CPU on interrupt or exception entry.
#[derive(Clone)]
#[repr(C)]
pub struct InterruptStackFrameValue {
    /// This value points to the instruction that should be executed when the interrupt
    /// handler returns. For most interrupts, this value points to the instruction immediately
    /// following the last executed instruction. However, for some exceptions (e.g., page faults),
    /// this value points to the faulting instruction, so that the instruction is restarted on
    /// return. See the documentation of the [`InterruptDescriptorTable`] fields for more details.
    pub instruction_pointer: VirtAddr,
    /// The code segment selector, padded with zeros.
    pub code_segment: u64,
    /// The flags register before the interrupt handler was invoked.
    pub cpu_flags: u64,
    /// The stack pointer at the time of the interrupt.
    pub stack_pointer: VirtAddr,
    /// The stack segment descriptor at the time of the interrupt (often zero in 64-bit mode).
    pub stack_segment: u64,
}

impl fmt::Debug for InterruptStackFrameValue {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        struct Hex(u64);
        impl fmt::Debug for Hex {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                write!(f, "{:#x}", self.0)
            }
        }

        let mut s = f.debug_struct("InterruptStackFrame");
        s.field("instruction_pointer", &self.instruction_pointer);
        s.field("code_segment", &self.code_segment);
        s.field("cpu_flags", &Hex(self.cpu_flags));
        s.field("stack_pointer", &self.stack_pointer);
        s.field("stack_segment", &self.stack_segment);
        s.finish()
    }
}

bitflags! {
    /// Describes an page fault error code.
    ///
    /// This structure is defined by the following manual sections:
    ///   * AMD Volume 2: 8.4.2
    ///   * Intel Volume 3A: 4.7
    #[repr(transparent)]
    pub struct PageFaultErrorCode: u64 {
        /// If this flag is set, the page fault was caused by a page-protection violation,
        /// else the page fault was caused by a not-present page.
        const PROTECTION_VIOLATION = 1;

        /// If this flag is set, the memory access that caused the page fault was a write.
        /// Else the access that caused the page fault is a memory read. This bit does not
        /// necessarily indicate the cause of the page fault was a read or write violation.
        const CAUSED_BY_WRITE = 1 << 1;

        /// If this flag is set, an access in user mode (CPL=3) caused the page fault. Else
        /// an access in supervisor mode (CPL=0, 1, or 2) caused the page fault. This bit
        /// does not necessarily indicate the cause of the page fault was a privilege violation.
        const USER_MODE = 1 << 2;

        /// If this flag is set, the page fault is a result of the processor reading a 1 from
        /// a reserved field within a page-translation-table entry.
        const MALFORMED_TABLE = 1 << 3;

        /// If this flag is set, it indicates that the access that caused the page fault was an
        /// instruction fetch.
        const INSTRUCTION_FETCH = 1 << 4;

        /// If this flag is set, it indicates that the page fault was caused by a protection key.
        const PROTECTION_KEY = 1 << 5;

        /// If this flag is set, it indicates that the page fault was caused by a shadow stack
        /// access.
        const SHADOW_STACK = 1 << 6;

        /// If this flag is set, it indicates that the page fault was caused by SGX access-control
        /// requirements (Intel-only).
        const SGX = 1 << 15;

        /// If this flag is set, it indicates that the page fault is a result of the processor
        /// encountering an RMP violation (AMD-only).
        const RMP = 1 << 31;
    }
}

/// Describes an error code referencing a segment selector.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct SelectorErrorCode {
    flags: u64,
}

impl SelectorErrorCode {
    /// Create a SelectorErrorCode. Returns None is any of the reserved bits (16-64) are set.
    pub const fn new(value: u64) -> Option<Self> {
        if value > u16::MAX as u64 {
            None
        } else {
            Some(Self { flags: value })
        }
    }

    /// Create a new SelectorErrorCode dropping any reserved bits (16-64).
    pub const fn new_truncate(value: u64) -> Self {
        Self {
            flags: (value as u16) as u64,
        }
    }

    /// If true, indicates that the exception occurred during delivery of an event
    /// external to the program, such as an interrupt or an earlier exception.
    pub fn external(&self) -> bool {
        self.flags.get_bit(0)
    }

    /// The descriptor table this error code refers to.
    pub fn descriptor_table(&self) -> DescriptorTable {
        match self.flags.get_bits(1..3) {
            0b00 => DescriptorTable::Gdt,
            0b01 => DescriptorTable::Idt,
            0b10 => DescriptorTable::Ldt,
            0b11 => DescriptorTable::Idt,
            _ => unreachable!(),
        }
    }

    /// The index of the selector which caused the error.
    pub fn index(&self) -> u64 {
        self.flags.get_bits(3..16)
    }

    /// If true, the #SS or #GP has returned zero as opposed to a SelectorErrorCode.
    pub fn is_null(&self) -> bool {
        self.flags == 0
    }
}

impl fmt::Debug for SelectorErrorCode {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut s = f.debug_struct("Selector Error");
        s.field("external", &self.external());
        s.field("descriptor table", &self.descriptor_table());
        s.field("index", &self.index());
        s.finish()
    }
}

/// The possible descriptor table values.
///
/// Used by the [`SelectorErrorCode`] to indicate which table caused the error.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum DescriptorTable {
    /// Global Descriptor Table.
    Gdt,
    /// Interrupt Descriptor Table.
    Idt,
    /// Logical Descriptor Table.
    Ldt,
}

/// This structure defines the CPU-internal exception vector numbers.
///
/// The values are defined by the following manual sections:
///   * AMD Volume 2: 8.2
///   * Intel Volume 3A: 6.3.1
#[repr(u8)]
#[non_exhaustive]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum ExceptionVector {
    /// Error during Division
    Division = 0x00,

    /// Debug
    Debug = 0x01,

    /// Non-Maskable Interrupt
    NonMaskableInterrupt = 0x02,

    /// Breakpoint
    Breakpoint = 0x03,

    /// Overflow
    Overflow = 0x04,

    /// Bound Range Exceeded
    BoundRange = 0x05,

    /// Invalid Opcode
    InvalidOpcode = 0x06,

    /// Device Not Available
    DeviceNotAvailable = 0x07,

    /// Double Fault
    Double = 0x08,

    /// Invalid TSS
    InvalidTss = 0x0A,

    /// Segment Not Present
    SegmentNotPresent = 0x0B,

    /// Stack Fault
    Stack = 0x0C,

    /// General Protection Fault
    GeneralProtection = 0x0D,

    /// Page Fault
    Page = 0x0E,

    /// x87 Floating-Point Exception
    X87FloatingPoint = 0x10,

    /// Alignment Check
    AlignmentCheck = 0x11,

    /// Machine Check
    MachineCheck = 0x12,

    /// SIMD Floating-Point Exception
    SimdFloatingPoint = 0x13,

    /// Virtualization Exception (Intel-only)
    Virtualization = 0x14,

    /// Control Protection Exception
    ControlProtection = 0x15,

    /// Hypervisor Injection (AMD-only)
    HypervisorInjection = 0x1C,

    /// VMM Communication (AMD-only)
    VmmCommunication = 0x1D,

    /// Security Exception
    Security = 0x1E,
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn size_test() {
        use core::mem::size_of;
        assert_eq!(size_of::<Entry<HandlerFunc>>(), 16);
        assert_eq!(size_of::<InterruptDescriptorTable>(), 256 * 16);
    }

    #[test]
    fn entry_derive_test() {
        fn foo(_: impl Clone + Copy + PartialEq + fmt::Debug) {}

        foo(Entry::<HandlerFuncWithErrCode> {
            pointer_low: 0,
            gdt_selector: 0,
            options: EntryOptions(0),
            pointer_middle: 0,
            pointer_high: 0,
            reserved: 0,
            phantom: PhantomData,
        })
    }
}