1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
pub use ash::version::{DeviceV1_0, EntryV1_0, InstanceV1_0};
use ash::vk;
use ash::vk::DeviceMemory;

use crate::low::vkstate::VulkanState;

pub struct VkMem<'a> {
    pub size: u64,
    pub index: u32,
    pub mem: DeviceMemory,

    state: &'a VulkanState,
}

/// For the moment, I am going to assume that 1 MemAlloc = 1 Buffer.
/// This should be changed to allow several buffer in one allocation which is more efficient.
pub struct VkBuffer<'a> {
    pub size: u64,
    pub offset: u64,
    pub buffer: vk::Buffer,
    state: &'a VulkanState,
}

impl<'a> VkBuffer<'a> {
    pub fn new(vkstate: &'a VulkanState, size: u64) -> Self {
        let queue_indices = &[vkstate.queue_family_index];
        let buffer_create_info = vk::BufferCreateInfo::builder()
            .size(size)
            .usage(vk::BufferUsageFlags::STORAGE_BUFFER)
            .sharing_mode(vk::SharingMode::EXCLUSIVE)
            .queue_family_indices(queue_indices);

        let buffer = unsafe {
            vkstate
                .device
                .create_buffer(&buffer_create_info, None)
                .unwrap()
        };

        VkBuffer {
            size,
            offset: 0,
            buffer,
            state: vkstate,
        }
    }

    pub fn get_buffer_memory_requirements(&self) -> vk::MemoryRequirements {
        unsafe {
            self.state
                .device
                .get_buffer_memory_requirements(self.buffer)
        }
    }

    pub fn bind(&mut self, mem: DeviceMemory, offset: u64) {
        self.offset = offset;
        unsafe {
            self.state
                .device
                .bind_buffer_memory(self.buffer, mem, self.offset)
                .expect("[ERR] Could not bind buffer memory")
        };
    }

    pub fn buffer_info(&self) {
        let req = self.get_buffer_memory_requirements();
        print!(
            "size: {}; offset: {}; alignement: {};",
            self.size, self.offset, req.alignment
        );
    }
}

/// Return (minimum memory size needed, buffers offsets)
pub fn compute_non_overlapping_buffer_alignment<'a>(
    buffers: &Vec<VkBuffer<'a>>,
) -> (u64, Vec<u64>) {
    let mut min_size = 0;
    let mut offsets: Vec<u64> = Vec::new();
    for buffer in buffers {
        let mem_req = buffer.get_buffer_memory_requirements();
        let req_size = mem_req.size;
        let req_alignment = mem_req.alignment;
        let off_bytes = min_size % req_alignment;
        if off_bytes == 0 {
            // if the current size is already a multiple of the required alignement
            // we can just use the size as the offset.
            offsets.push(min_size);
            min_size += req_size;
        } else {
            // Otherwise we find the closest multiple of the alignment.
            let offset = min_size + (req_alignment - off_bytes);
            offsets.push(offset);
            min_size += req_size + offset;
        }
    }

    (min_size, offsets)
}

impl<'a> Drop for VkBuffer<'a> {
    fn drop(&mut self) {
        unsafe {
            self.state.device.destroy_buffer(self.buffer, None);
        }
    }
}

impl<'a> VkMem<'a> {
    pub fn find_mem(vkstate: &'a VulkanState, size: u64) -> Option<Self> {
        let mem_props = unsafe {
            vkstate
                .instance
                .get_physical_device_memory_properties(vkstate.physical_device)
        };
        let mut mem_index: Option<u32> = None;
        for i in 0..mem_props.memory_type_count {
            let mem_type_props = mem_props.memory_types[i as usize];
            let buffer_max_size = mem_props.memory_heaps[mem_type_props.heap_index as usize].size;
            println!(
                "[NFO] Mem {} max heap size: {} Mio",
                i,
                buffer_max_size as f64 / 1024.0 / 1024.0
            );
            if mem_type_props
                .property_flags
                .contains(vk::MemoryPropertyFlags::HOST_VISIBLE)
                && mem_type_props
                    .property_flags
                    .contains(vk::MemoryPropertyFlags::HOST_COHERENT)
                && mem_props.memory_heaps[mem_type_props.heap_index as usize].size > size
            {
                mem_index = Some(i);
            }
        }

        if mem_index.is_none() {
            return None;
        }

        let mem_index = mem_index.unwrap();
        let allocate_nfo = vk::MemoryAllocateInfo::builder()
            .allocation_size(size)
            .memory_type_index(mem_index)
            .build();
        let vulkan_mem = unsafe {
            vkstate
                .device
                .allocate_memory(&allocate_nfo, None)
                .expect("[ERR] Could not allocate memory in device.")
        };

        let mem_struct: VkMem<'a> = VkMem {
            size: size,
            index: mem_index,
            mem: vulkan_mem,
            state: vkstate,
        };
        Some(mem_struct)
    }

    pub fn map_memory<T>(&self, data: &Vec<T>, offset: u64) {
        let size = (data.len() * std::mem::size_of::<T>()) as u64;
        let buffer: *mut T = unsafe {
            self.state
                .device
                .map_memory(self.mem, offset, size, vk::MemoryMapFlags::empty())
                .expect("[ERR] Could not map memory.") as *mut T
        };

        unsafe {
            std::ptr::copy_nonoverlapping(data.as_ptr(), buffer, data.len());
        }

        unsafe {
            self.state.device.unmap_memory(self.mem);
        }
    }

    pub fn map_buffer<T>(&self, data: &Vec<T>, buffer: &VkBuffer) {
        let pp_data: *mut T = unsafe {
            self.state
                .device
                .map_memory(
                    self.mem,
                    buffer.offset,
                    buffer.size,
                    vk::MemoryMapFlags::empty(),
                )
                .expect("[ERR] Could not map memory.") as *mut T
        };

        unsafe {
            std::ptr::copy_nonoverlapping(data.as_ptr(), pp_data, data.len());
        }

        unsafe {
            self.state.device.unmap_memory(self.mem);
        }
    }

    pub fn get_memory<T>(&self, capacity: usize, offset: u64) -> Vec<T> {
        let mut output: Vec<T> = Vec::with_capacity(capacity);
        let size = (capacity * std::mem::size_of::<T>()) as u64;
        let buffer: *mut T = unsafe {
            self.state
                .device
                .map_memory(self.mem, offset, size, vk::MemoryMapFlags::empty())
                .expect("[ERR] Could not map memory.") as *mut T
        };

        unsafe {
            std::ptr::copy_nonoverlapping(buffer, output.as_mut_ptr(), capacity);
            output.set_len(capacity);
        }

        unsafe {
            self.state.device.unmap_memory(self.mem);
        }

        output
    }

    pub fn get_buffer<T>(&self, buffer: &VkBuffer) -> Vec<T> {
        let capacity: usize = (buffer.size as usize) / std::mem::size_of::<T>();
        let mut output: Vec<T> = Vec::with_capacity(capacity);
        let pp_data: *mut T = unsafe {
            self.state
                .device
                .map_memory(
                    self.mem,
                    buffer.offset,
                    buffer.size,
                    vk::MemoryMapFlags::empty(),
                )
                .expect("[ERR] Could not map memory.") as *mut T
        };

        unsafe {
            std::ptr::copy_nonoverlapping(pp_data, output.as_mut_ptr(), capacity);
            output.set_len(capacity);
        }

        unsafe {
            self.state.device.unmap_memory(self.mem);
        }

        output
    }
}

impl<'a> Drop for VkMem<'a> {
    fn drop(&mut self) {
        unsafe {
            self.state.device.free_memory(self.mem, None);
        }
    }
}