1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
//! Cryptographic hash algorithms & MAC functions
//!
//! Cryptographic hash algorithms are mathematical algorithms that map data of arbitrary size to a
//! fixed size value. There are one-way functions practically infeasible to invert.
//!
//! Message authentication code (MAC) is a short piece of information attached
//! to a message confirming its authenticity and data integrity.
//!
//! # Usage
//!
//! The first step is to create an instance of the algorithm needed. All the hash algorithms
//! supported are defined in the [`HashAlgorithmId`] enum. For MACs, see the [`MacAlgorithmId`] enum.
//!
//! The creation of an algorithm can be relatively time-intensive. Therefore, it is advised to cache
//! and reuse the created algorithms.
//!
//! Once the algorithm is created, an instance of an hash can be created. It's worth noting that
//! hash and MAC instances share the underlying [`Hash`] type.
//!
//! Using the [`hash`][`Hash::hash`] method,
//! it is possible to hash per block. For example, if the user wants to hash a large file, it can
//! call the [`hash`][`Hash::hash`] multiple times with only a subset of the file, limiting the memory usage.
//! The final result will be exactly the same as if the whole file was loaded and [`hash`][`Hash::hash`] was
//! called once.
//!
//! To get the hash value, the user must call the [`finish`][`Hash::finish`] method. This effectively consumes the
//! hash instance. To start the calculation of a new hash, a new instance must be created from the
//! algorithm.
//!
//! The following example hashes a string with the SHA-256 algorithm:
//! ```
//! use win_crypto_ng::hash::{HashAlgorithm, HashAlgorithmId};
//!
//! const DATA: &'static str = "This is a test.";
//!
//! let algo = HashAlgorithm::open(HashAlgorithmId::Sha256).unwrap();
//! let mut hash = algo.new_hash().unwrap();
//! hash.hash(DATA.as_bytes()).unwrap();
//! let result = hash.finish().unwrap();
//!
//! assert_eq!(result.as_slice(), &[
//!     0xA8, 0xA2, 0xF6, 0xEB, 0xE2, 0x86, 0x69, 0x7C,
//!     0x52, 0x7E, 0xB3, 0x5A, 0x58, 0xB5, 0x53, 0x95,
//!     0x32, 0xE9, 0xB3, 0xAE, 0x3B, 0x64, 0xD4, 0xEB,
//!     0x0A, 0x46, 0xFB, 0x65, 0x7B, 0x41, 0x56, 0x2C,
//! ]);
//!```
//! The example below computes a simple MAC value from null input, using the AES-GMAC algorithm:
//! ```
//! use win_crypto_ng::hash::{HashAlgorithm, MacAlgorithmId};
//!
//! const SECRET: &[u8] = &[
//!   0xcf, 0x06, 0x3a, 0x34, 0xd4, 0xa9, 0xa7, 0x6c,
//!   0x2c, 0x86, 0x78, 0x7d, 0x3f, 0x96, 0xdb, 0x71,
//! ];
//! const IV: &[u8] = &[
//!   0x11, 0x3b, 0x97, 0x85, 0x97, 0x18, 0x64, 0xc8,
//!   0x3b, 0x01, 0xc7, 0x87
//! ];
//!
//! let algo = HashAlgorithm::open(MacAlgorithmId::AesGmac).unwrap();
//! let mut mac = algo.new_mac(SECRET, Some(IV)).unwrap();
//! mac.hash(&[]).unwrap();
//! let result = mac.finish().unwrap();
//!
//! assert_eq!(result.as_slice(), &[
//!   0x72, 0xac, 0x84, 0x93, 0xe3, 0xa5, 0x22, 0x8b,
//!   0x5d, 0x13, 0x0a, 0x69, 0xd2, 0x51, 0x0e, 0x42,
//! ]);
//! ```
//!
//! [`HashAlgorithmId`]: enum.HashAlgorithmId.html
//! [`MacAlgorithmId`]: enum.MacAlgorithmId.html
//! [`Hash`]: struct.Hash.html
//! [`Hash::hash]: struct.Hash.html#method.hash
//! [`Hash::finish`]: struct.Hash.html#method.finish

use crate::buffer::Buffer;
use crate::helpers::{AlgoHandle, Handle, WindowsString};
use crate::property::{AlgorithmName, HashLength, InitializationVector, ObjectLength};
use crate::{Error, Result};
use std::convert::TryFrom;
use std::marker::PhantomData;
use std::ptr::null_mut;
use winapi::shared::bcrypt::*;
use winapi::shared::minwindef::{PUCHAR, ULONG};

/// Algorithm kind used with hashing facilities.
///
/// This can be either a regular [`HashAlgorithmId`] (hash function)
/// or [`MacAlgorithmId`] (message authentication code).
///
/// [`HashAlgorithmId`]: ./enum.HashAlgorithmId.html
/// [`MacAlgorithmId`]: ./enum.MacAlgorithmId.html
pub trait AlgorithmKind {
    fn to_str(&self) -> &'static str;
}

/// Hashing algorithm identifiers
#[derive(Debug, Clone, Copy, PartialOrd, PartialEq)]
pub enum HashAlgorithmId {
    /// The 160-bit secure hash algorithm.
    ///
    /// Standard: FIPS 180-2, FIPS 198.
    Sha1,
    /// The 256-bit secure hash algorithm.
    ///
    /// Standard: FIPS 180-2, FIPS 198.
    Sha256,
    /// The 384-bit secure hash algorithm.
    ///
    /// Standard: FIPS 180-2, FIPS 198.
    Sha384,
    /// The 512-bit secure hash algorithm.
    ///
    /// Standard: FIPS 180-2, FIPS 198.
    Sha512,
    /// The MD2 hash algorithm.
    ///
    /// Standard: RFC 1319.
    Md2,
    /// The MD4 hash algorithm.
    ///
    /// Standard: RFC 1320.
    Md4,
    /// The MD5 hash algorithm.
    ///
    /// Standard: RFC 1321.
    Md5,
}

impl AlgorithmKind for HashAlgorithmId {
    fn to_str(&self) -> &'static str {
        HashAlgorithmId::to_str(*self)
    }
}

/// MAC (Message authentication code) algorithm identifiers
#[derive(Debug, Clone, Copy, PartialOrd, PartialEq)]
pub enum MacAlgorithmId {
    /// The advanced encryption standard (AES) cipher based message authentication code (CMAC) symmetric encryption algorithm.
    ///
    /// Standard: SP 800-38B.
    ///
    /// **Windows 8**: Support for this algorithm begins.
    AesCmac,
    /// The advanced encryption standard (AES) Galois message authentication code (GMAC) symmetric encryption algorithm.
    ///
    /// Standard: SP800-38D.
    ///
    /// **Windows Vista**: This algorithm is supported beginning with Windows Vista with SP1.
    AesGmac,
}

impl AlgorithmKind for MacAlgorithmId {
    fn to_str(&self) -> &'static str {
        MacAlgorithmId::to_str(*self)
    }
}

impl HashAlgorithmId {
    pub fn to_str(self) -> &'static str {
        match self {
            Self::Sha1 => BCRYPT_SHA1_ALGORITHM,
            Self::Sha256 => BCRYPT_SHA256_ALGORITHM,
            Self::Sha384 => BCRYPT_SHA384_ALGORITHM,
            Self::Sha512 => BCRYPT_SHA512_ALGORITHM,
            Self::Md2 => BCRYPT_MD2_ALGORITHM,
            Self::Md4 => BCRYPT_MD4_ALGORITHM,
            Self::Md5 => BCRYPT_MD5_ALGORITHM,
        }
    }
}

impl<'a> TryFrom<&'a str> for HashAlgorithmId {
    type Error = &'a str;

    fn try_from(val: &'a str) -> Result<HashAlgorithmId, Self::Error> {
        match val {
            BCRYPT_SHA1_ALGORITHM => Ok(Self::Sha1),
            BCRYPT_SHA256_ALGORITHM => Ok(Self::Sha256),
            BCRYPT_SHA384_ALGORITHM => Ok(Self::Sha384),
            BCRYPT_SHA512_ALGORITHM => Ok(Self::Sha512),
            BCRYPT_MD2_ALGORITHM => Ok(Self::Md2),
            BCRYPT_MD4_ALGORITHM => Ok(Self::Md4),
            BCRYPT_MD5_ALGORITHM => Ok(Self::Md5),
            val => Err(val),
        }
    }
}

impl MacAlgorithmId {
    fn to_str(self) -> &'static str {
        match self {
            Self::AesCmac => BCRYPT_AES_CMAC_ALGORITHM,
            Self::AesGmac => BCRYPT_AES_GMAC_ALGORITHM,
        }
    }
}

impl<'a> TryFrom<&'a str> for MacAlgorithmId {
    type Error = &'a str;

    fn try_from(val: &'a str) -> std::result::Result<MacAlgorithmId, Self::Error> {
        match val {
            BCRYPT_AES_CMAC_ALGORITHM => Ok(Self::AesCmac),
            BCRYPT_AES_GMAC_ALGORITHM => Ok(Self::AesGmac),
            val => Err(val),
        }
    }
}

/// Hashing algorithm
pub struct HashAlgorithm<Kind: AlgorithmKind> {
    handle: AlgoHandle,
    _kind: PhantomData<Kind>,
}

impl<Kind: AlgorithmKind> HashAlgorithm<Kind> {
    /// Open a hash algorithm provider
    ///
    /// # Examples
    ///
    /// ```
    /// # use win_crypto_ng::hash::{HashAlgorithm, HashAlgorithmId};
    /// let algo = HashAlgorithm::open(HashAlgorithmId::Sha256);
    ///
    /// assert!(algo.is_ok());
    /// ```
    pub fn open(id: Kind) -> Result<Self> {
        let handle = AlgoHandle::open(id.to_str())?;

        Ok(Self {
            handle,
            _kind: PhantomData,
        })
    }

    fn create_hash(&self, secret: Option<&[u8]>, iv: Option<&[u8]>) -> Result<Hash> {
        let (sec_ptr, sec_len) = secret
            .map(|x| (x.as_ptr(), x.len()))
            .unwrap_or((std::ptr::null(), 0));
        let object_size = self.handle.get_property::<ObjectLength>()?;

        let mut hash_handle = HashHandle::new();
        let mut object = Buffer::new(object_size as usize);
        unsafe {
            Error::check(BCryptCreateHash(
                self.handle.as_ptr(),
                hash_handle.as_mut_ptr(),
                object.as_mut_ptr(),
                object.len() as ULONG,
                sec_ptr as *mut _,
                sec_len as ULONG,
                0,
            ))?;
        };

        if let Some(iv) = iv {
            hash_handle.set_property::<InitializationVector>(iv)?;
        }

        Ok(Hash {
            handle: hash_handle,
            object,
        })
    }
}

impl HashAlgorithm<HashAlgorithmId> {
    /// Creates a new hash from the algorithm
    pub fn new_hash(&self) -> Result<Hash> {
        self.create_hash(None, None)
    }
}

impl HashAlgorithm<MacAlgorithmId> {
    /// Creates a new Message Authentication Code (MAC), if supported by the
    /// backing algorithm (AES-GMAC/AES-CMAC).
    ///
    /// Passing IV is required for GMAC mode, otherwise don't pass it for OMAC.
    pub fn new_mac(&self, secret: &[u8], iv: Option<&[u8]>) -> Result<Hash> {
        self.create_hash(Some(secret), iv)
    }
}

struct HashHandle {
    handle: BCRYPT_HASH_HANDLE,
}

unsafe impl Send for HashHandle {}

impl HashHandle {
    pub fn new() -> Self {
        Self { handle: null_mut() }
    }
}

impl Drop for HashHandle {
    fn drop(&mut self) {
        if !self.handle.is_null() {
            unsafe {
                BCryptDestroyHash(self.handle);
            }
        }
    }
}

impl Handle for HashHandle {
    fn as_ptr(&self) -> BCRYPT_HASH_HANDLE {
        self.handle
    }

    fn as_mut_ptr(&mut self) -> *mut BCRYPT_HASH_HANDLE {
        &mut self.handle
    }
}

/// Hashing operation
pub struct Hash {
    handle: HashHandle,
    /// Backing allocation for the hash object
    object: Buffer,
}

impl Hash {
    /// Perform a one way hash on the data
    ///
    /// This method can be called multiple times. To get the final result, use [`finish`].
    ///
    /// # Examples
    ///
    /// ```
    /// # use win_crypto_ng::hash::{HashAlgorithm, HashAlgorithmId};
    /// let algo = HashAlgorithm::open(HashAlgorithmId::Sha256).unwrap();
    /// let mut hash = algo.new_hash().unwrap();
    /// hash.hash("Some data".as_bytes()).unwrap();
    /// hash.hash("Some more data".as_bytes()).unwrap();
    /// ```
    ///
    /// [`finish`]: #method.finish
    pub fn hash(&mut self, data: &[u8]) -> Result<()> {
        unsafe {
            Error::check(BCryptHashData(
                self.handle.as_ptr(),
                data.as_ptr() as PUCHAR,
                data.len() as ULONG,
                0,
            ))
        }
    }

    /// Get the hash value
    ///
    /// This method consumes the hash operation. To create a new hash, a new instance must be created.
    ///
    /// # Examples
    ///
    /// ```
    /// # use win_crypto_ng::hash::{HashAlgorithm, HashAlgorithmId};
    /// let algo = HashAlgorithm::open(HashAlgorithmId::Sha256).unwrap();
    /// let mut hash = algo.new_hash().unwrap();
    /// hash.hash("Some data".as_bytes()).unwrap();
    /// let result = hash.finish().unwrap();
    ///
    /// assert_eq!(result.as_slice(), [
    ///     0x1F, 0xE6, 0x38, 0xB4, 0x78, 0xF8, 0xF0, 0xB2,
    ///     0xC2, 0xAA, 0xB3, 0xDB, 0xFD, 0x3F, 0x05, 0xD6,
    ///     0xDf, 0xE2, 0x19, 0x1C, 0xD7, 0xB4, 0x48, 0x22,
    ///     0x41, 0xFE, 0x58, 0x56, 0x7E, 0x37, 0xAE, 0xF6,
    /// ]);
    /// ```
    pub fn finish(self) -> Result<Buffer> {
        let hash_size = self.hash_size()?;
        let mut result = Buffer::new(hash_size);

        unsafe {
            Error::check(BCryptFinishHash(
                self.handle.as_ptr(),
                result.as_mut_ptr(),
                result.len() as ULONG,
                0,
            ))
            .map(|_| result)
        }
    }

    /// Get the final hash length, in bytes.
    ///
    /// # Examples
    ///
    /// ```
    /// # use win_crypto_ng::hash::{HashAlgorithm, HashAlgorithmId};
    /// let algo = HashAlgorithm::open(HashAlgorithmId::Sha256).unwrap();
    /// let hash = algo.new_hash().unwrap();
    /// let hash_size = hash.hash_size().unwrap();
    ///
    /// assert_eq!(hash_size, 32);
    /// ```
    pub fn hash_size(&self) -> Result<usize> {
        self.handle
            .get_property::<HashLength>()
            .map(|hash_size| hash_size as usize)
    }

    /// Get the hash algorithm used for this hash object.
    ///
    /// # Examples
    ///
    /// ```
    /// # use win_crypto_ng::hash::{HashAlgorithm, HashAlgorithmId};
    /// let algo = HashAlgorithm::open(HashAlgorithmId::Sha256).unwrap();
    /// let hash = algo.new_hash().unwrap();
    ///
    /// assert_eq!(hash.hash_algorithm().unwrap(), HashAlgorithmId::Sha256);
    /// ```
    pub fn hash_algorithm(&self) -> Result<HashAlgorithmId> {
        self.handle
            .get_property_unsized::<AlgorithmName>()
            .map(|name| {
                WindowsString::from_bytes_with_nul(name.as_ref().into())
                    .expect("API to return 0-terminated wide string")
            })
            .map(|name| {
                HashAlgorithmId::try_from(name.to_string().as_str())
                    .expect("Windows CNG API to return a correct algorithm name")
            })
    }
}

impl Clone for Hash {
    fn clone(&self) -> Self {
        // Rely on the fact that the existing buffer was already created with
        // size of `BCRYPT_OBJECT_LENGTH` as required by `BCryptDuplicateHash`.
        let object_size = self.object.len();

        let mut handle = HashHandle::new();
        let mut object = Buffer::new(object_size);

        Error::check(unsafe {
            BCryptDuplicateHash(
                self.handle.as_ptr(),
                handle.as_mut_ptr(),
                object.as_mut_ptr(),
                object.len() as ULONG,
                0,
            )
        })
        .expect("to always be able to duplicate a valid hash object");

        Self { handle, object }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    const DATA: &'static str = "0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF";

    #[test]
    fn sha1() {
        check_hash(
            HashAlgorithmId::Sha1,
            DATA.as_bytes(),
            &[
                0x2B, 0x44, 0x89, 0x60, 0x6A, 0x23, 0xFB, 0x31, 0xFC, 0xDC, 0x84, 0x9F, 0xA7, 0xE5,
                0x77, 0xBA, 0x90, 0xF6, 0xD3, 0x9A,
            ],
        )
    }

    #[test]
    fn sha256() {
        check_hash(
            HashAlgorithmId::Sha256,
            DATA.as_bytes(),
            &[
                0x0E, 0xA3, 0x7C, 0x24, 0x3F, 0x60, 0x97, 0x4B, 0x0D, 0x54, 0xC6, 0xB2, 0xD7, 0x6C,
                0xEC, 0xE3, 0xF4, 0xC7, 0x42, 0x49, 0x2C, 0xCE, 0x48, 0xEA, 0xF8, 0x1F, 0x35, 0x79,
                0x31, 0xD6, 0xD6, 0x9E,
            ],
        )
    }

    #[test]
    fn sha384() {
        check_hash(
            HashAlgorithmId::Sha384,
            DATA.as_bytes(),
            &[
                0x2A, 0x10, 0x60, 0x89, 0x6A, 0xCB, 0xA9, 0xFA, 0x37, 0x11, 0xBF, 0x10, 0x9E, 0x90,
                0x24, 0xEA, 0x19, 0xF5, 0xFC, 0x33, 0xAF, 0x0F, 0x47, 0x15, 0xC3, 0xE9, 0xD8, 0x63,
                0xB3, 0x24, 0xA5, 0x08, 0x9F, 0xAB, 0x95, 0x36, 0xB2, 0xAC, 0x10, 0xF6, 0xC1, 0xE7,
                0x31, 0x03, 0x09, 0x54, 0x18, 0x41,
            ],
        )
    }

    #[test]
    fn sha512() {
        check_hash(
            HashAlgorithmId::Sha512,
            DATA.as_bytes(),
            &[
                0x39, 0x50, 0xAC, 0xCD, 0xFE, 0xF7, 0x46, 0x20, 0x71, 0x42, 0x78, 0x76, 0x5B, 0xBD,
                0xCE, 0x04, 0xD4, 0x57, 0x90, 0x4B, 0x7C, 0xEA, 0x86, 0x31, 0x39, 0x6C, 0xBA, 0x6D,
                0x8B, 0xCE, 0xFC, 0xE0, 0x30, 0x8F, 0xC4, 0x7C, 0xFB, 0x88, 0x5B, 0xC8, 0x9E, 0xBD,
                0xF4, 0xFF, 0xA6, 0xF9, 0x8F, 0xC8, 0x51, 0x05, 0x54, 0x7C, 0xBD, 0xDF, 0x56, 0x57,
                0xB6, 0xAD, 0xBD, 0xDD, 0xA3, 0x8C, 0xB9, 0xB5,
            ],
        )
    }

    #[test]
    fn md2() {
        check_hash(
            HashAlgorithmId::Md2,
            DATA.as_bytes(),
            &[
                0x08, 0x18, 0x53, 0xA0, 0x5C, 0x1F, 0x58, 0xC6, 0xED, 0x43, 0x46, 0x4C, 0x79, 0x7D,
                0x65, 0x26,
            ],
        )
    }

    #[test]
    fn md4() {
        check_hash(
            HashAlgorithmId::Md4,
            DATA.as_bytes(),
            &[
                0x24, 0x3C, 0xDA, 0xF5, 0x91, 0x4A, 0xE8, 0x70, 0x91, 0xC7, 0x13, 0xB5, 0xFA, 0x9F,
                0xA7, 0x98,
            ],
        )
    }

    #[test]
    fn md5() {
        check_hash(
            HashAlgorithmId::Md5,
            DATA.as_bytes(),
            &[
                0xE8, 0x89, 0xD8, 0x2D, 0xD1, 0x11, 0xD6, 0x31, 0x5D, 0x7B, 0x1E, 0xDC, 0xE2, 0xB1,
                0xB3, 0x0F,
            ],
        )
    }

    fn check_hash(algo_id: HashAlgorithmId, data: &[u8], expected_hash: &[u8]) {
        let algo = HashAlgorithm::open(algo_id).unwrap();
        let mut hash = algo.new_hash().unwrap();
        let hash_size = hash.hash_size().unwrap();
        hash.hash(data).unwrap();
        let result = hash.finish().unwrap();

        assert_eq!(hash_size, expected_hash.len());
        assert_eq!(result.as_slice(), expected_hash);

        check_clone_impl(algo_id);
    }

    fn check_clone_impl(algo_id: HashAlgorithmId) {
        let algo = HashAlgorithm::open(algo_id).unwrap();
        let mut hash1 = algo.new_hash().unwrap();
        hash1.hash(DATA.as_bytes()).unwrap();

        let mut hash2 = hash1.clone();
        assert_ne!(hash1.handle.as_ptr(), hash2.handle.as_ptr());

        const AUX_DATA: &[u8] = &[0xE8, 0x91, 0xD9, 0x12];
        hash1.hash(AUX_DATA).unwrap();
        hash2.hash(AUX_DATA).unwrap();

        let result1 = hash1.finish().unwrap();
        let result2 = hash2.finish().unwrap();
        assert_eq!(result1, result2);
    }

    trait HexSlice: std::borrow::Borrow<str> {
        fn as_hex(&self) -> Vec<u8> {
            let res: Vec<u8> = self
                .borrow()
                .as_bytes()
                .rchunks(2)
                .map(|slice| std::str::from_utf8(slice).unwrap())
                .map(|chr| u8::from_str_radix(chr, 16).unwrap())
                .rev()
                .collect();
            res
        }
    }
    impl<'a> HexSlice for &'a str {}

    #[test]
    fn cmac() {
        // Test vectors from
        // https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/proposed-modes/omac/omac-ad.pdf
        let test_vectors = vec![
            ("2b7e151628aed2a6abf7158809cf4f3c", "", "bb1d6929e95937287fa37d129b756746"),
            ("2b7e151628aed2a6abf7158809cf4f3c", "6bc1bee22e409f96e93d7e117393172a", "070a16b46b4d4144f79bdd9dd04a287c"),
            ("2b7e151628aed2a6abf7158809cf4f3c", "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411", "dfa66747de9ae63030ca32611497c827"),
            ("2b7e151628aed2a6abf7158809cf4f3c", "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710", "51f0bebf7e3b9d92fc49741779363cfe")
        ];

        for (key, msg, tag) in test_vectors {
            let (key, msg, tag) = (&key.as_hex(), &msg.as_hex(), &tag.as_hex());
            check_mac(MacAlgorithmId::AesCmac, msg, tag, key);
        }
    }

    #[test]
    fn gmac() {
        // Test select vectors from (PTlen = 0 are effectively GMAC vectors)
        // http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip
        let algo = HashAlgorithm::open(MacAlgorithmId::AesGmac).unwrap();

        let key = &"ce8d1103100fa290f953fbb439efdee4".as_hex();
        let iv = &"4874c6f8082366fc7e49b933".as_hex();
        let mut gmac = algo.new_mac(key, Some(iv)).unwrap();
        gmac.hash(&"d69d033c32029789263c689e11ff7e9e8eefc48ddbc4e10eeae1c9edbb44f04e7cc6471501eadda3940ab433d0a8c210".as_hex()).unwrap(); // AAD
        let digest = gmac.finish().unwrap();
        assert_eq!(
            digest.as_slice(),
            &*"a5964b77af0b8aecd844d6adec8b7b1c".as_hex()
        );

        let key = &"4fedd84c9495e7ff81db48d367305d80".as_hex();
        let iv = &"d82bfb016a35b5efa5e3438a".as_hex();
        let mut gmac = algo.new_mac(key, Some(iv)).unwrap();
        gmac.hash(&"0c80e282e64aeac2fba241686a9b33a6bdbac1230442e79fc5c0b6926158b0bf9b8562b570d784e749b69d64ed17f45e".as_hex()).unwrap(); // AAD
        let digest = gmac.finish().unwrap();
        assert_eq!(
            digest.as_slice(),
            &*"aad8933fdce92b9a24c2a9c2cc367291".as_hex()
        );
    }

    fn check_mac(algo_id: MacAlgorithmId, data: &[u8], expected_hash: &[u8], secret: &[u8]) {
        let algo = HashAlgorithm::open(algo_id).unwrap();
        let mut hash = algo.new_mac(secret, None).unwrap();
        let hash_size = hash.hash_size().unwrap();
        hash.hash(data).unwrap();
        let result = hash.finish().unwrap();

        assert_eq!(hash_size, expected_hash.len());
        assert_eq!(result.as_slice(), expected_hash);
    }

    #[test]
    fn send() {
        use crate::helpers::assert_send;
        assert_send::<HashHandle>();
        assert_send::<Hash>();
        assert_send::<HashAlgorithm<HashAlgorithmId>>();
    }
}