1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
use crate::memory::MemoryCreator;
use crate::trampoline::MemoryCreatorProxy;
use anyhow::{bail, Result};
use serde::{Deserialize, Serialize};
use std::cmp;
use std::fmt;
#[cfg(feature = "cache")]
use std::path::Path;
use std::sync::Arc;
use wasmparser::WasmFeatures;
#[cfg(feature = "cache")]
use wasmtime_cache::CacheConfig;
use wasmtime_environ::{CompilerBuilder, Tunables};
use wasmtime_jit::{JitDumpAgent, NullProfilerAgent, ProfilingAgent, VTuneAgent};
use wasmtime_runtime::{InstanceAllocator, OnDemandInstanceAllocator, RuntimeMemoryCreator};

#[cfg(feature = "pooling-allocator")]
mod pooling;

#[cfg(feature = "pooling-allocator")]
pub use self::pooling::*;

/// Represents the module instance allocation strategy to use.
#[derive(Clone)]
pub enum InstanceAllocationStrategy {
    /// The on-demand instance allocation strategy.
    ///
    /// Resources related to a module instance are allocated at instantiation time and
    /// immediately deallocated when the `Store` referencing the instance is dropped.
    ///
    /// This is the default allocation strategy for Wasmtime.
    OnDemand,
    /// The pooling instance allocation strategy.
    ///
    /// A pool of resources is created in advance and module instantiation reuses resources
    /// from the pool. Resources are returned to the pool when the `Store` referencing the instance
    /// is dropped.
    #[cfg(feature = "pooling-allocator")]
    Pooling {
        /// The allocation strategy to use.
        strategy: PoolingAllocationStrategy,
        /// The module limits to use.
        module_limits: ModuleLimits,
        /// The instance limits to use.
        instance_limits: InstanceLimits,
    },
}

impl InstanceAllocationStrategy {
    /// The default pooling instance allocation strategy.
    #[cfg(feature = "pooling-allocator")]
    pub fn pooling() -> Self {
        Self::Pooling {
            strategy: PoolingAllocationStrategy::default(),
            module_limits: ModuleLimits::default(),
            instance_limits: InstanceLimits::default(),
        }
    }
}

impl Default for InstanceAllocationStrategy {
    fn default() -> Self {
        Self::OnDemand
    }
}

#[derive(Clone)]
/// Configure the strategy used for versioning in serializing and deserializing [`crate::Module`].
pub enum ModuleVersionStrategy {
    /// Use the wasmtime crate's Cargo package version.
    WasmtimeVersion,
    /// Use a custom version string. Must be at most 255 bytes.
    Custom(String),
    /// Emit no version string in serialization, and accept all version strings in deserialization.
    None,
}

impl Default for ModuleVersionStrategy {
    fn default() -> Self {
        ModuleVersionStrategy::WasmtimeVersion
    }
}

/// Global configuration options used to create an [`Engine`](crate::Engine)
/// and customize its behavior.
///
/// This structure exposed a builder-like interface and is primarily consumed by
/// [`Engine::new()`](crate::Engine::new)
pub struct Config {
    #[cfg(compiler)]
    pub(crate) compiler: Box<dyn CompilerBuilder>,
    pub(crate) tunables: Tunables,
    #[cfg(feature = "cache")]
    pub(crate) cache_config: CacheConfig,
    pub(crate) profiler: Arc<dyn ProfilingAgent>,
    pub(crate) mem_creator: Option<Arc<dyn RuntimeMemoryCreator>>,
    pub(crate) allocation_strategy: InstanceAllocationStrategy,
    pub(crate) max_wasm_stack: usize,
    pub(crate) features: WasmFeatures,
    pub(crate) wasm_backtrace_details_env_used: bool,
    #[cfg(feature = "async")]
    pub(crate) async_stack_size: usize,
    pub(crate) async_support: bool,
    pub(crate) module_version: ModuleVersionStrategy,
    pub(crate) parallel_compilation: bool,
    pub(crate) paged_memory_initialization: bool,
}

impl Config {
    /// Creates a new configuration object with the default configuration
    /// specified.
    pub fn new() -> Self {
        let mut ret = Self {
            tunables: Tunables::default(),
            #[cfg(compiler)]
            compiler: compiler_builder(Strategy::Auto).unwrap(),
            #[cfg(feature = "cache")]
            cache_config: CacheConfig::new_cache_disabled(),
            profiler: Arc::new(NullProfilerAgent),
            mem_creator: None,
            allocation_strategy: InstanceAllocationStrategy::OnDemand,
            max_wasm_stack: 1 << 20,
            wasm_backtrace_details_env_used: false,
            features: WasmFeatures::default(),
            #[cfg(feature = "async")]
            async_stack_size: 2 << 20,
            async_support: false,
            module_version: ModuleVersionStrategy::default(),
            parallel_compilation: true,
            // Default to paged memory initialization when using uffd on linux
            paged_memory_initialization: cfg!(all(target_os = "linux", feature = "uffd")),
        };
        #[cfg(compiler)]
        {
            ret.cranelift_debug_verifier(false);
            ret.cranelift_opt_level(OptLevel::Speed);
        }
        ret.wasm_reference_types(true);
        ret.wasm_multi_value(true);
        ret.wasm_bulk_memory(true);
        ret.wasm_backtrace_details(WasmBacktraceDetails::Environment);
        ret
    }

    /// Sets the target triple for the [`Config`].
    ///
    /// By default, the host target triple is used for the [`Config`].
    ///
    /// This method can be used to change the target triple.
    ///
    /// Cranelift flags will not be inferred for the given target and any
    /// existing target-specific Cranelift flags will be cleared.
    ///
    /// # Errors
    ///
    /// This method will error if the given target triple is not supported.
    #[cfg(compiler)]
    #[cfg_attr(nightlydoc, doc(cfg(feature = "cranelift")))] // see build.rs
    pub fn target(&mut self, target: &str) -> Result<&mut Self> {
        use std::str::FromStr;
        self.compiler
            .target(target_lexicon::Triple::from_str(target).map_err(|e| anyhow::anyhow!(e))?)?;

        Ok(self)
    }

    /// Whether or not to enable support for asynchronous functions in Wasmtime.
    ///
    /// When enabled, the config can optionally define host functions with `async`.
    /// Instances created and functions called with this `Config` *must* be called
    /// through their asynchronous APIs, however. For example using
    /// [`Func::call`](crate::Func::call) will panic when used with this config.
    ///
    /// # Asynchronous Wasm
    ///
    /// WebAssembly does not currently have a way to specify at the bytecode
    /// level what is and isn't async. Host-defined functions, however, may be
    /// defined as `async`. WebAssembly imports always appear synchronous, which
    /// gives rise to a bit of an impedance mismatch here. To solve this
    /// Wasmtime supports "asynchronous configs" which enables calling these
    /// asynchronous functions in a way that looks synchronous to the executing
    /// WebAssembly code.
    ///
    /// An asynchronous config must always invoke wasm code asynchronously,
    /// meaning we'll always represent its computation as a
    /// [`Future`](std::future::Future). The `poll` method of the futures
    /// returned by Wasmtime will perform the actual work of calling the
    /// WebAssembly. Wasmtime won't manage its own thread pools or similar,
    /// that's left up to the embedder.
    ///
    /// To implement futures in a way that WebAssembly sees asynchronous host
    /// functions as synchronous, all async Wasmtime futures will execute on a
    /// separately allocated native stack from the thread otherwise executing
    /// Wasmtime. This separate native stack can then be switched to and from.
    /// Using this whenever an `async` host function returns a future that
    /// resolves to `Pending` we switch away from the temporary stack back to
    /// the main stack and propagate the `Pending` status.
    ///
    /// In general it's encouraged that the integration with `async` and
    /// wasmtime is designed early on in your embedding of Wasmtime to ensure
    /// that it's planned that WebAssembly executes in the right context of your
    /// application.
    ///
    /// # Execution in `poll`
    ///
    /// The [`Future::poll`](std::future::Future::poll) method is the main
    /// driving force behind Rust's futures. That method's own documentation
    /// states "an implementation of `poll` should strive to return quickly, and
    /// should not block". This, however, can be at odds with executing
    /// WebAssembly code as part of the `poll` method itself. If your
    /// WebAssembly is untrusted then this could allow the `poll` method to take
    /// arbitrarily long in the worst case, likely blocking all other
    /// asynchronous tasks.
    ///
    /// To remedy this situation you have a two possible ways to solve this:
    ///
    /// * First you can spawn futures into a thread pool. By doing this in a
    ///   thread pool you are relaxing the requirement that `Future::poll` must
    ///   be fast because your future is executing on a separate thread. This
    ///   strategy, however, would likely still require some form of
    ///   cancellation via [`crate::Store::interrupt_handle`] to ensure wasm
    ///   doesn't take *too* long to execute.
    ///
    /// * Alternatively you can enable the
    ///   [`Config::consume_fuel`](crate::Config::consume_fuel) method as well
    ///   as [`crate::Store::out_of_fuel_async_yield`] When doing so this will
    ///   configure Wasmtime futures to yield periodically while they're
    ///   executing WebAssembly code. After consuming the specified amount of
    ///   fuel wasm futures will return `Poll::Pending` from their `poll`
    ///   method, and will get automatically re-polled later. This enables the
    ///   `Future::poll` method to take roughly a fixed amount of time since
    ///   fuel is guaranteed to get consumed while wasm is executing. Note that
    ///   to prevent infinite execution of wasm you'll need to use either
    ///   [`crate::Store::interrupt_handle`] or a normal timeout on futures
    ///   (which will get triggered due to periodic `poll`s).
    ///
    /// In either case special care needs to be taken when integrating
    /// asynchronous wasm into your application. You should carefully plan where
    /// WebAssembly will execute and what compute resources will be allotted to
    /// it. If Wasmtime doesn't support exactly what you'd like just yet, please
    /// feel free to open an issue!
    #[cfg(feature = "async")]
    #[cfg_attr(nightlydoc, doc(cfg(feature = "async")))]
    pub fn async_support(&mut self, enable: bool) -> &mut Self {
        self.async_support = enable;
        self
    }

    /// Configures whether DWARF debug information will be emitted during
    /// compilation.
    ///
    /// By default this option is `false`.
    pub fn debug_info(&mut self, enable: bool) -> &mut Self {
        self.tunables.generate_native_debuginfo = enable;
        self
    }

    /// Configures whether backtraces in `Trap` will parse debug info in the wasm file to
    /// have filename/line number information.
    ///
    /// When enabled this will causes modules to retain debugging information
    /// found in wasm binaries. This debug information will be used when a trap
    /// happens to symbolicate each stack frame and attempt to print a
    /// filename/line number for each wasm frame in the stack trace.
    ///
    /// By default this option is `WasmBacktraceDetails::Environment`, meaning
    /// that wasm will read `WASMTIME_BACKTRACE_DETAILS` to indicate whether details
    /// should be parsed.
    pub fn wasm_backtrace_details(&mut self, enable: WasmBacktraceDetails) -> &mut Self {
        self.wasm_backtrace_details_env_used = false;
        self.tunables.parse_wasm_debuginfo = match enable {
            WasmBacktraceDetails::Enable => true,
            WasmBacktraceDetails::Disable => false,
            WasmBacktraceDetails::Environment => {
                self.wasm_backtrace_details_env_used = true;
                std::env::var("WASMTIME_BACKTRACE_DETAILS")
                    .map(|s| s == "1")
                    .unwrap_or(false)
            }
        };
        self
    }

    /// Configures whether functions and loops will be interruptable via the
    /// [`Store::interrupt_handle`](crate::Store::interrupt_handle) method.
    ///
    /// For more information see the documentation on
    /// [`Store::interrupt_handle`](crate::Store::interrupt_handle).
    ///
    /// By default this option is `false`.
    pub fn interruptable(&mut self, enable: bool) -> &mut Self {
        self.tunables.interruptable = enable;
        self
    }

    /// Configures whether execution of WebAssembly will "consume fuel" to
    /// either halt or yield execution as desired.
    ///
    /// This option is similar in purpose to [`Config::interruptable`] where
    /// you can prevent infinitely-executing WebAssembly code. The difference
    /// is that this option allows deterministic execution of WebAssembly code
    /// by instrumenting generated code consume fuel as it executes. When fuel
    /// runs out the behavior is defined by configuration within a [`Store`],
    /// and by default a trap is raised.
    ///
    /// Note that a [`Store`] starts with no fuel, so if you enable this option
    /// you'll have to be sure to pour some fuel into [`Store`] before
    /// executing some code.
    ///
    /// By default this option is `false`.
    ///
    /// [`Store`]: crate::Store
    pub fn consume_fuel(&mut self, enable: bool) -> &mut Self {
        self.tunables.consume_fuel = enable;
        self
    }

    /// Configures the maximum amount of stack space available for
    /// executing WebAssembly code.
    ///
    /// WebAssembly has well-defined semantics on stack overflow. This is
    /// intended to be a knob which can help configure how much stack space
    /// wasm execution is allowed to consume. Note that the number here is not
    /// super-precise, but rather wasm will take at most "pretty close to this
    /// much" stack space.
    ///
    /// If a wasm call (or series of nested wasm calls) take more stack space
    /// than the `size` specified then a stack overflow trap will be raised.
    ///
    /// When the `async` feature is enabled, this value cannot exceed the
    /// `async_stack_size` option. Be careful not to set this value too close
    /// to `async_stack_size` as doing so may limit how much stack space
    /// is available for host functions. Unlike wasm functions that trap
    /// on stack overflow, a host function that overflows the stack will
    /// abort the process.
    ///
    /// By default this option is 1 MiB.
    pub fn max_wasm_stack(&mut self, size: usize) -> Result<&mut Self> {
        #[cfg(feature = "async")]
        if size > self.async_stack_size {
            bail!("wasm stack size cannot exceed the async stack size");
        }

        if size == 0 {
            bail!("wasm stack size cannot be zero");
        }

        self.max_wasm_stack = size;
        Ok(self)
    }

    /// Configures the size of the stacks used for asynchronous execution.
    ///
    /// This setting configures the size of the stacks that are allocated for
    /// asynchronous execution. The value cannot be less than `max_wasm_stack`.
    ///
    /// The amount of stack space guaranteed for host functions is
    /// `async_stack_size - max_wasm_stack`, so take care not to set these two values
    /// close to one another; doing so may cause host functions to overflow the
    /// stack and abort the process.
    ///
    /// By default this option is 2 MiB.
    #[cfg(feature = "async")]
    #[cfg_attr(nightlydoc, doc(cfg(feature = "async")))]
    pub fn async_stack_size(&mut self, size: usize) -> Result<&mut Self> {
        if size < self.max_wasm_stack {
            bail!("async stack size cannot be less than the maximum wasm stack size");
        }
        self.async_stack_size = size;
        Ok(self)
    }

    /// Configures whether the WebAssembly threads proposal will be enabled for
    /// compilation.
    ///
    /// The [WebAssembly threads proposal][threads] is not currently fully
    /// standardized and is undergoing development. Additionally the support in
    /// wasmtime itself is still being worked on. Support for this feature can
    /// be enabled through this method for appropriate wasm modules.
    ///
    /// This feature gates items such as shared memories and atomic
    /// instructions. Note that enabling the threads feature will
    /// also enable the bulk memory feature.
    ///
    /// This is `false` by default.
    ///
    /// > **Note**: Wasmtime does not implement everything for the wasm threads
    /// > spec at this time, so bugs, panics, and possibly segfaults should be
    /// > expected. This should not be enabled in a production setting right
    /// > now.
    ///
    /// [threads]: https://github.com/webassembly/threads
    pub fn wasm_threads(&mut self, enable: bool) -> &mut Self {
        self.features.threads = enable;
        // The threads proposal depends on the bulk memory proposal
        if enable {
            self.wasm_bulk_memory(true);
        }
        self
    }

    /// Configures whether the [WebAssembly reference types proposal][proposal]
    /// will be enabled for compilation.
    ///
    /// This feature gates items such as the `externref` and `funcref` types as
    /// well as allowing a module to define multiple tables.
    ///
    /// Note that enabling the reference types feature will also enable the bulk
    /// memory feature.
    ///
    /// This is `true` by default on x86-64, and `false` by default on other
    /// architectures.
    ///
    /// [proposal]: https://github.com/webassembly/reference-types
    pub fn wasm_reference_types(&mut self, enable: bool) -> &mut Self {
        self.features.reference_types = enable;

        #[cfg(compiler)]
        {
            self.compiler
                .set("enable_safepoints", if enable { "true" } else { "false" })
                .unwrap();
        }

        // The reference types proposal depends on the bulk memory proposal.
        if enable {
            self.wasm_bulk_memory(true);
        }

        self
    }

    /// Configures whether the WebAssembly SIMD proposal will be
    /// enabled for compilation.
    ///
    /// The [WebAssembly SIMD proposal][proposal] is not currently
    /// fully standardized and is undergoing development. Additionally the
    /// support in wasmtime itself is still being worked on. Support for this
    /// feature can be enabled through this method for appropriate wasm
    /// modules.
    ///
    /// This feature gates items such as the `v128` type and all of its
    /// operators being in a module.
    ///
    /// This is `false` by default.
    ///
    /// > **Note**: Wasmtime does not implement everything for the wasm simd
    /// > spec at this time, so bugs, panics, and possibly segfaults should be
    /// > expected. This should not be enabled in a production setting right
    /// > now.
    ///
    /// [proposal]: https://github.com/webassembly/simd
    pub fn wasm_simd(&mut self, enable: bool) -> &mut Self {
        self.features.simd = enable;
        #[cfg(compiler)]
        {
            let val = if enable { "true" } else { "false" };
            self.compiler
                .set("enable_simd", val)
                .expect("should be valid flag");
        }
        self
    }

    /// Configures whether the [WebAssembly bulk memory operations
    /// proposal][proposal] will be enabled for compilation.
    ///
    /// This feature gates items such as the `memory.copy` instruction, passive
    /// data/table segments, etc, being in a module.
    ///
    /// This is `true` by default.
    ///
    /// [proposal]: https://github.com/webassembly/bulk-memory-operations
    pub fn wasm_bulk_memory(&mut self, enable: bool) -> &mut Self {
        self.features.bulk_memory = enable;
        self
    }

    /// Configures whether the WebAssembly multi-value [proposal] will
    /// be enabled for compilation.
    ///
    /// This feature gates functions and blocks returning multiple values in a
    /// module, for example.
    ///
    /// This is `true` by default.
    ///
    /// [proposal]: https://github.com/webassembly/multi-value
    pub fn wasm_multi_value(&mut self, enable: bool) -> &mut Self {
        self.features.multi_value = enable;
        self
    }

    /// Configures whether the WebAssembly multi-memory [proposal] will
    /// be enabled for compilation.
    ///
    /// This feature gates modules having more than one linear memory
    /// declaration or import.
    ///
    /// This is `false` by default.
    ///
    /// [proposal]: https://github.com/webassembly/multi-memory
    pub fn wasm_multi_memory(&mut self, enable: bool) -> &mut Self {
        self.features.multi_memory = enable;
        self
    }

    /// Configures whether the WebAssembly module linking [proposal] will
    /// be enabled for compilation.
    ///
    /// Note that development of this feature is still underway, so enabling
    /// this is likely to be full of bugs.
    ///
    /// This is `false` by default.
    ///
    /// [proposal]: https://github.com/webassembly/module-linking
    pub fn wasm_module_linking(&mut self, enable: bool) -> &mut Self {
        self.features.module_linking = enable;
        self
    }

    /// Configures whether the WebAssembly memory64 [proposal] will
    /// be enabled for compilation.
    ///
    /// Note that this the upstream specification is not finalized and Wasmtime
    /// may also have bugs for this feature since it hasn't been exercised
    /// much.
    ///
    /// This is `false` by default.
    ///
    /// [proposal]: https://github.com/webassembly/memory64
    pub fn wasm_memory64(&mut self, enable: bool) -> &mut Self {
        self.features.memory64 = enable;
        self
    }

    /// Configures which compilation strategy will be used for wasm modules.
    ///
    /// This method can be used to configure which compiler is used for wasm
    /// modules, and for more documentation consult the [`Strategy`] enumeration
    /// and its documentation.
    ///
    /// The default value for this is `Strategy::Auto`.
    ///
    /// # Errors
    ///
    /// Some compilation strategies require compile-time options of `wasmtime`
    /// itself to be set, but if they're not set and the strategy is specified
    /// here then an error will be returned.
    #[cfg(compiler)]
    #[cfg_attr(nightlydoc, doc(cfg(feature = "cranelift")))] // see build.rs
    pub fn strategy(&mut self, strategy: Strategy) -> Result<&mut Self> {
        self.compiler = compiler_builder(strategy)?;
        Ok(self)
    }

    /// Creates a default profiler based on the profiling strategy chosen.
    ///
    /// Profiler creation calls the type's default initializer where the purpose is
    /// really just to put in place the type used for profiling.
    pub fn profiler(&mut self, profile: ProfilingStrategy) -> Result<&mut Self> {
        self.profiler = match profile {
            ProfilingStrategy::JitDump => Arc::new(JitDumpAgent::new()?) as Arc<dyn ProfilingAgent>,
            ProfilingStrategy::VTune => Arc::new(VTuneAgent::new()?) as Arc<dyn ProfilingAgent>,
            ProfilingStrategy::None => Arc::new(NullProfilerAgent),
        };
        Ok(self)
    }

    /// Configures whether the debug verifier of Cranelift is enabled or not.
    ///
    /// When Cranelift is used as a code generation backend this will configure
    /// it to have the `enable_verifier` flag which will enable a number of debug
    /// checks inside of Cranelift. This is largely only useful for the
    /// developers of wasmtime itself.
    ///
    /// The default value for this is `false`
    #[cfg(compiler)]
    #[cfg_attr(nightlydoc, doc(cfg(feature = "cranelift")))] // see build.rs
    pub fn cranelift_debug_verifier(&mut self, enable: bool) -> &mut Self {
        let val = if enable { "true" } else { "false" };
        self.compiler
            .set("enable_verifier", val)
            .expect("should be valid flag");
        self
    }

    /// Configures the Cranelift code generator optimization level.
    ///
    /// When the Cranelift code generator is used you can configure the
    /// optimization level used for generated code in a few various ways. For
    /// more information see the documentation of [`OptLevel`].
    ///
    /// The default value for this is `OptLevel::None`.
    #[cfg(compiler)]
    #[cfg_attr(nightlydoc, doc(cfg(feature = "cranelift")))] // see build.rs
    pub fn cranelift_opt_level(&mut self, level: OptLevel) -> &mut Self {
        let val = match level {
            OptLevel::None => "none",
            OptLevel::Speed => "speed",
            OptLevel::SpeedAndSize => "speed_and_size",
        };
        self.compiler
            .set("opt_level", val)
            .expect("should be valid flag");
        self
    }

    /// Configures whether Cranelift should perform a NaN-canonicalization pass.
    ///
    /// When Cranelift is used as a code generation backend this will configure
    /// it to replace NaNs with a single canonical value. This is useful for users
    /// requiring entirely deterministic WebAssembly computation.
    /// This is not required by the WebAssembly spec, so it is not enabled by default.
    ///
    /// The default value for this is `false`
    #[cfg(compiler)]
    #[cfg_attr(nightlydoc, doc(cfg(feature = "cranelift")))] // see build.rs
    pub fn cranelift_nan_canonicalization(&mut self, enable: bool) -> &mut Self {
        let val = if enable { "true" } else { "false" };
        self.compiler
            .set("enable_nan_canonicalization", val)
            .expect("should be valid flag");
        self
    }

    /// Allows setting a Cranelift boolean flag or preset. This allows
    /// fine-tuning of Cranelift settings.
    ///
    /// Since Cranelift flags may be unstable, this method should not be considered to be stable
    /// either; other `Config` functions should be preferred for stability.
    ///
    /// # Safety
    ///
    /// This is marked as unsafe, because setting the wrong flag might break invariants,
    /// resulting in execution hazards.
    ///
    /// # Errors
    ///
    /// This method can fail if the flag's name does not exist.
    #[cfg(compiler)]
    #[cfg_attr(nightlydoc, doc(cfg(feature = "cranelift")))] // see build.rs
    pub unsafe fn cranelift_flag_enable(&mut self, flag: &str) -> Result<&mut Self> {
        self.compiler.enable(flag)?;
        Ok(self)
    }

    /// Allows settings another Cranelift flag defined by a flag name and value. This allows
    /// fine-tuning of Cranelift settings.
    ///
    /// Since Cranelift flags may be unstable, this method should not be considered to be stable
    /// either; other `Config` functions should be preferred for stability.
    ///
    /// Note that this is marked as unsafe, because setting the wrong flag might break invariants,
    /// resulting in execution hazards.
    ///
    /// # Errors
    ///
    /// This method can fail if the flag's name does not exist, or the value is not appropriate for
    /// the flag type.
    #[cfg(compiler)]
    #[cfg_attr(nightlydoc, doc(cfg(feature = "cranelift")))] // see build.rs
    pub unsafe fn cranelift_flag_set(&mut self, name: &str, value: &str) -> Result<&mut Self> {
        self.compiler.set(name, value)?;
        Ok(self)
    }

    /// Loads cache configuration specified at `path`.
    ///
    /// This method will read the file specified by `path` on the filesystem and
    /// attempt to load cache configuration from it. This method can also fail
    /// due to I/O errors, misconfiguration, syntax errors, etc. For expected
    /// syntax in the configuration file see the [documentation online][docs].
    ///
    /// By default cache configuration is not enabled or loaded.
    ///
    /// This method is only available when the `cache` feature of this crate is
    /// enabled.
    ///
    /// # Errors
    ///
    /// This method can fail due to any error that happens when loading the file
    /// pointed to by `path` and attempting to load the cache configuration.
    ///
    /// [docs]: https://bytecodealliance.github.io/wasmtime/cli-cache.html
    #[cfg(feature = "cache")]
    #[cfg_attr(nightlydoc, doc(cfg(feature = "cache")))]
    pub fn cache_config_load(&mut self, path: impl AsRef<Path>) -> Result<&mut Self> {
        self.cache_config = CacheConfig::from_file(Some(path.as_ref()))?;
        Ok(self)
    }

    /// Loads cache configuration from the system default path.
    ///
    /// This commit is the same as [`Config::cache_config_load`] except that it
    /// does not take a path argument and instead loads the default
    /// configuration present on the system. This is located, for example, on
    /// Unix at `$HOME/.config/wasmtime/config.toml` and is typically created
    /// with the `wasmtime config new` command.
    ///
    /// By default cache configuration is not enabled or loaded.
    ///
    /// This method is only available when the `cache` feature of this crate is
    /// enabled.
    ///
    /// # Errors
    ///
    /// This method can fail due to any error that happens when loading the
    /// default system configuration. Note that it is not an error if the
    /// default config file does not exist, in which case the default settings
    /// for an enabled cache are applied.
    ///
    /// [docs]: https://bytecodealliance.github.io/wasmtime/cli-cache.html
    #[cfg(feature = "cache")]
    #[cfg_attr(nightlydoc, doc(cfg(feature = "cache")))]
    pub fn cache_config_load_default(&mut self) -> Result<&mut Self> {
        self.cache_config = CacheConfig::from_file(None)?;
        Ok(self)
    }

    /// Sets a custom memory creator.
    ///
    /// Custom memory creators are used when creating host `Memory` objects or when
    /// creating instance linear memories for the on-demand instance allocation strategy.
    pub fn with_host_memory(&mut self, mem_creator: Arc<dyn MemoryCreator>) -> &mut Self {
        self.mem_creator = Some(Arc::new(MemoryCreatorProxy(mem_creator)));
        self
    }

    /// Sets the instance allocation strategy to use.
    ///
    /// When using the pooling instance allocation strategy, all linear memories
    /// will be created as "static" and the
    /// [`Config::static_memory_maximum_size`] and
    /// [`Config::static_memory_guard_size`] options will be used to configure
    /// the virtual memory allocations of linear memories.
    pub fn allocation_strategy(&mut self, strategy: InstanceAllocationStrategy) -> &mut Self {
        self.allocation_strategy = strategy;
        self
    }

    /// Sets whether or not an attempt is made to initialize linear memories by page.
    ///
    /// This setting is `false` by default and Wasmtime initializes linear memories
    /// by copying individual data segments from the compiled module.
    ///
    /// Setting this to `true` will cause compilation to attempt to organize the
    /// data segments into WebAssembly pages and linear memories are initialized by
    /// copying each page rather than individual data segments.
    ///
    /// Modules that import a memory or have data segments that use a global base
    /// will continue to be initialized by copying each data segment individually.
    ///
    /// When combined with the `uffd` feature on Linux, this will allow Wasmtime
    /// to delay initialization of a linear memory page until it is accessed
    /// for the first time during WebAssembly execution; this may improve
    /// instantiation performance as a result.
    pub fn paged_memory_initialization(&mut self, value: bool) -> &mut Self {
        self.paged_memory_initialization = value;
        self
    }

    /// Configures the maximum size, in bytes, where a linear memory is
    /// considered static, above which it'll be considered dynamic.
    ///
    /// > Note: this value has important performance ramifications, be sure to
    /// > understand what this value does before tweaking it and benchmarking.
    ///
    /// This function configures the threshold for wasm memories whether they're
    /// implemented as a dynamically relocatable chunk of memory or a statically
    /// located chunk of memory. The `max_size` parameter here is the size, in
    /// bytes, where if the maximum size of a linear memory is below `max_size`
    /// then it will be statically allocated with enough space to never have to
    /// move. If the maximum size of a linear memory is larger than `max_size`
    /// then wasm memory will be dynamically located and may move in memory
    /// through growth operations.
    ///
    /// Specifying a `max_size` of 0 means that all memories will be dynamic and
    /// may be relocated through `memory.grow`. Also note that if any wasm
    /// memory's maximum size is below `max_size` then it will still reserve
    /// `max_size` bytes in the virtual memory space.
    ///
    /// ## Static vs Dynamic Memory
    ///
    /// Linear memories represent contiguous arrays of bytes, but they can also
    /// be grown through the API and wasm instructions. When memory is grown if
    /// space hasn't been preallocated then growth may involve relocating the
    /// base pointer in memory. Memories in Wasmtime are classified in two
    /// different ways:
    ///
    /// * **static** - these memories preallocate all space necessary they'll
    ///   ever need, meaning that the base pointer of these memories is never
    ///   moved. Static memories may take more virtual memory space because of
    ///   pre-reserving space for memories.
    ///
    /// * **dynamic** - these memories are not preallocated and may move during
    ///   growth operations. Dynamic memories consume less virtual memory space
    ///   because they don't need to preallocate space for future growth.
    ///
    /// Static memories can be optimized better in JIT code because once the
    /// base address is loaded in a function it's known that we never need to
    /// reload it because it never changes, `memory.grow` is generally a pretty
    /// fast operation because the wasm memory is never relocated, and under
    /// some conditions bounds checks can be elided on memory accesses.
    ///
    /// Dynamic memories can't be quite as heavily optimized because the base
    /// address may need to be reloaded more often, they may require relocating
    /// lots of data on `memory.grow`, and dynamic memories require
    /// unconditional bounds checks on all memory accesses.
    ///
    /// ## Should you use static or dynamic memory?
    ///
    /// In general you probably don't need to change the value of this property.
    /// The defaults here are optimized for each target platform to consume a
    /// reasonable amount of physical memory while also generating speedy
    /// machine code.
    ///
    /// One of the main reasons you may want to configure this today is if your
    /// environment can't reserve virtual memory space for each wasm linear
    /// memory. On 64-bit platforms wasm memories require a 6GB reservation by
    /// default, and system limits may prevent this in some scenarios. In this
    /// case you may wish to force memories to be allocated dynamically meaning
    /// that the virtual memory footprint of creating a wasm memory should be
    /// exactly what's used by the wasm itself.
    ///
    /// For 32-bit memories a static memory must contain at least 4GB of
    /// reserved address space plus a guard page to elide any bounds checks at
    /// all. Smaller static memories will use similar bounds checks as dynamic
    /// memories.
    ///
    /// ## Default
    ///
    /// The default value for this property depends on the host platform. For
    /// 64-bit platforms there's lots of address space available, so the default
    /// configured here is 4GB. WebAssembly linear memories currently max out at
    /// 4GB which means that on 64-bit platforms Wasmtime by default always uses
    /// a static memory. This, coupled with a sufficiently sized guard region,
    /// should produce the fastest JIT code on 64-bit platforms, but does
    /// require a large address space reservation for each wasm memory.
    ///
    /// For 32-bit platforms this value defaults to 1GB. This means that wasm
    /// memories whose maximum size is less than 1GB will be allocated
    /// statically, otherwise they'll be considered dynamic.
    ///
    /// ## Static Memory and Pooled Instance Allocation
    ///
    /// When using the pooling instance allocator memories are considered to
    /// always be static memories, they are never dynamic. This setting
    /// configures the size of linear memory to reserve for each memory in the
    /// pooling allocator.
    pub fn static_memory_maximum_size(&mut self, max_size: u64) -> &mut Self {
        let max_pages = max_size / u64::from(wasmtime_environ::WASM_PAGE_SIZE);
        self.tunables.static_memory_bound = max_pages;
        self
    }

    /// Indicates that the "static" style of memory should always be used.
    ///
    /// This configuration option enables selecting the "static" option for all
    /// linear memories created within this `Config`. This means that all
    /// memories will be allocated up-front and will never move. Additionally
    /// this means that all memories are synthetically limited by the
    /// [`Config::static_memory_maximum_size`] option, irregardless of what the
    /// actual maximum size is on the memory's original type.
    ///
    /// For the difference between static and dynamic memories, see the
    /// [`Config::static_memory_maximum_size`].
    pub fn static_memory_forced(&mut self, force: bool) -> &mut Self {
        self.tunables.static_memory_bound_is_maximum = force;
        self
    }

    /// Configures the size, in bytes, of the guard region used at the end of a
    /// static memory's address space reservation.
    ///
    /// > Note: this value has important performance ramifications, be sure to
    /// > understand what this value does before tweaking it and benchmarking.
    ///
    /// All WebAssembly loads/stores are bounds-checked and generate a trap if
    /// they're out-of-bounds. Loads and stores are often very performance
    /// critical, so we want the bounds check to be as fast as possible!
    /// Accelerating these memory accesses is the motivation for a guard after a
    /// memory allocation.
    ///
    /// Memories (both static and dynamic) can be configured with a guard at the
    /// end of them which consists of unmapped virtual memory. This unmapped
    /// memory will trigger a memory access violation (e.g. segfault) if
    /// accessed. This allows JIT code to elide bounds checks if it can prove
    /// that an access, if out of bounds, would hit the guard region. This means
    /// that having such a guard of unmapped memory can remove the need for
    /// bounds checks in JIT code.
    ///
    /// For the difference between static and dynamic memories, see the
    /// [`Config::static_memory_maximum_size`].
    ///
    /// ## How big should the guard be?
    ///
    /// In general, like with configuring `static_memory_maximum_size`, you
    /// probably don't want to change this value from the defaults. Otherwise,
    /// though, the size of the guard region affects the number of bounds checks
    /// needed for generated wasm code. More specifically, loads/stores with
    /// immediate offsets will generate bounds checks based on how big the guard
    /// page is.
    ///
    /// For 32-bit memories a 4GB static memory is required to even start
    /// removing bounds checks. A 4GB guard size will guarantee that the module
    /// has zero bounds checks for memory accesses. A 2GB guard size will
    /// eliminate all bounds checks with an immediate offset less than 2GB. A
    /// guard size of zero means that all memory accesses will still have bounds
    /// checks.
    ///
    /// ## Default
    ///
    /// The default value for this property is 2GB on 64-bit platforms. This
    /// allows eliminating almost all bounds checks on loads/stores with an
    /// immediate offset of less than 2GB. On 32-bit platforms this defaults to
    /// 64KB.
    ///
    /// ## Static vs Dynamic Guard Size
    ///
    /// Note that for now the static memory guard size must be at least as large
    /// as the dynamic memory guard size, so configuring this property to be
    /// smaller than the dynamic memory guard size will have no effect.
    pub fn static_memory_guard_size(&mut self, guard_size: u64) -> &mut Self {
        let guard_size = round_up_to_pages(guard_size);
        let guard_size = cmp::max(guard_size, self.tunables.dynamic_memory_offset_guard_size);
        self.tunables.static_memory_offset_guard_size = guard_size;
        self
    }

    /// Configures the size, in bytes, of the guard region used at the end of a
    /// dynamic memory's address space reservation.
    ///
    /// For the difference between static and dynamic memories, see the
    /// [`Config::static_memory_maximum_size`]
    ///
    /// For more information about what a guard is, see the documentation on
    /// [`Config::static_memory_guard_size`].
    ///
    /// Note that the size of the guard region for dynamic memories is not super
    /// critical for performance. Making it reasonably-sized can improve
    /// generated code slightly, but for maximum performance you'll want to lean
    /// towards static memories rather than dynamic anyway.
    ///
    /// Also note that the dynamic memory guard size must be smaller than the
    /// static memory guard size, so if a large dynamic memory guard is
    /// specified then the static memory guard size will also be automatically
    /// increased.
    ///
    /// ## Default
    ///
    /// This value defaults to 64KB.
    pub fn dynamic_memory_guard_size(&mut self, guard_size: u64) -> &mut Self {
        let guard_size = round_up_to_pages(guard_size);
        self.tunables.dynamic_memory_offset_guard_size = guard_size;
        self.tunables.static_memory_offset_guard_size =
            cmp::max(guard_size, self.tunables.static_memory_offset_guard_size);
        self
    }

    /// Configures the size, in bytes, of the extra virtual memory space
    /// reserved after a "dynamic" memory for growing into.
    ///
    /// For the difference between static and dynamic memories, see the
    /// [`Config::static_memory_maximum_size`]
    ///
    /// Dynamic memories can be relocated in the process's virtual address space
    /// on growth and do not always reserve their entire space up-front. This
    /// means that a growth of the memory may require movement in the address
    /// space, which in the worst case can copy a large number of bytes from one
    /// region to another.
    ///
    /// This setting configures how many bytes are reserved after the initial
    /// reservation for a dynamic memory for growing into. A value of 0 here
    /// means that no extra bytes are reserved and all calls to `memory.grow`
    /// will need to relocate the wasm linear memory (copying all the bytes). A
    /// value of 1 megabyte, however, means that `memory.grow` can allocate up
    /// to a megabyte of extra memory before the memory needs to be moved in
    /// linear memory.
    ///
    /// Note that this is a currently simple heuristic for optimizing the growth
    /// of dynamic memories, primarily implemented for the memory64 propsal
    /// where all memories are currently "dynamic". This is unlikely to be a
    /// one-size-fits-all style approach and if you're an embedder running into
    /// issues with dynamic memories and growth and are interested in having
    /// other growth strategies available here please feel free to [open an
    /// issue on the Wasmtime repository][issue]!
    ///
    /// [issue]: https://github.com/bytecodealliance/wasmtime/issues/ne
    ///
    /// ## Default
    ///
    /// For 64-bit platforms this defaults to 2GB, and for 32-bit platforms this
    /// defaults to 1MB.
    pub fn dynamic_memory_reserved_for_growth(&mut self, reserved: u64) -> &mut Self {
        self.tunables.dynamic_memory_growth_reserve = round_up_to_pages(reserved);
        self
    }

    /// Indicates whether a guard region is present before allocations of
    /// linear memory.
    ///
    /// Guard regions before linear memories are never used during normal
    /// operation of WebAssembly modules, even if they have out-of-bounds
    /// loads. The only purpose for a preceding guard region in linear memory
    /// is extra protection against possible bugs in code generators like
    /// Cranelift. This setting does not affect performance in any way, but will
    /// result in larger virtual memory reservations for linear memories (it
    /// won't actually ever use more memory, just use more of the address
    /// space).
    ///
    /// The size of the guard region before linear memory is the same as the
    /// guard size that comes after linear memory, which is configured by
    /// [`Config::static_memory_guard_size`] and
    /// [`Config::dynamic_memory_guard_size`].
    ///
    /// ## Default
    ///
    /// This value defaults to `true`.
    pub fn guard_before_linear_memory(&mut self, guard: bool) -> &mut Self {
        self.tunables.guard_before_linear_memory = guard;
        self
    }

    /// Configure the version information used in serialized and deserialzied [`crate::Module`]s.
    /// This effects the behavior of [`crate::Module::serialize()`], as well as
    /// [`crate::Module::deserialize()`] and related functions.
    ///
    /// The default strategy is to use the wasmtime crate's Cargo package version.
    pub fn module_version(&mut self, strategy: ModuleVersionStrategy) -> Result<&mut Self> {
        match strategy {
            // This case requires special precondition for assertion in SerializedModule::to_bytes
            ModuleVersionStrategy::Custom(ref v) => {
                if v.as_bytes().len() > 255 {
                    bail!("custom module version cannot be more than 255 bytes: {}", v);
                }
            }
            _ => {}
        }
        self.module_version = strategy;
        Ok(self)
    }

    /// Configure wether wasmtime should compile a module using multiple threads.
    ///
    /// Disabling this will result in a single thread being used to compile the wasm bytecode.
    ///
    /// By default parallel compilation is enabled.
    #[cfg(feature = "parallel-compilation")]
    #[cfg_attr(nightlydoc, doc(cfg(feature = "parallel-compilation")))]
    pub fn parallel_compilation(&mut self, parallel: bool) -> &mut Self {
        self.parallel_compilation = parallel;
        self
    }

    pub(crate) fn build_allocator(&self) -> Result<Box<dyn InstanceAllocator>> {
        #[cfg(feature = "async")]
        let stack_size = self.async_stack_size;

        #[cfg(not(feature = "async"))]
        let stack_size = 0;

        match self.allocation_strategy {
            InstanceAllocationStrategy::OnDemand => Ok(Box::new(OnDemandInstanceAllocator::new(
                self.mem_creator.clone(),
                stack_size,
            ))),
            #[cfg(feature = "pooling-allocator")]
            InstanceAllocationStrategy::Pooling {
                strategy,
                module_limits,
                instance_limits,
            } => Ok(Box::new(wasmtime_runtime::PoolingInstanceAllocator::new(
                strategy.into(),
                module_limits.into(),
                instance_limits.into(),
                stack_size,
                &self.tunables,
            )?)),
        }
    }
}

#[cfg(compiler)]
fn compiler_builder(strategy: Strategy) -> Result<Box<dyn CompilerBuilder>> {
    match strategy {
        Strategy::Auto | Strategy::Cranelift => Ok(wasmtime_cranelift::builder()),
    }
}

fn round_up_to_pages(val: u64) -> u64 {
    let page_size = region::page::size() as u64;
    debug_assert!(page_size.is_power_of_two());
    val.checked_add(page_size - 1)
        .map(|val| val & !(page_size - 1))
        .unwrap_or(u64::max_value() / page_size + 1)
}

impl Default for Config {
    fn default() -> Config {
        Config::new()
    }
}

impl Clone for Config {
    fn clone(&self) -> Config {
        Config {
            #[cfg(compiler)]
            compiler: self.compiler.clone(),
            tunables: self.tunables.clone(),
            #[cfg(feature = "cache")]
            cache_config: self.cache_config.clone(),
            profiler: self.profiler.clone(),
            features: self.features.clone(),
            mem_creator: self.mem_creator.clone(),
            allocation_strategy: self.allocation_strategy.clone(),
            max_wasm_stack: self.max_wasm_stack,
            wasm_backtrace_details_env_used: self.wasm_backtrace_details_env_used,
            async_support: self.async_support,
            #[cfg(feature = "async")]
            async_stack_size: self.async_stack_size,
            module_version: self.module_version.clone(),
            parallel_compilation: self.parallel_compilation,
            paged_memory_initialization: self.paged_memory_initialization,
        }
    }
}

impl fmt::Debug for Config {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut f = f.debug_struct("Config");
        f.field("debug_info", &self.tunables.generate_native_debuginfo)
            .field("parse_wasm_debuginfo", &self.tunables.parse_wasm_debuginfo)
            .field("wasm_threads", &self.features.threads)
            .field("wasm_reference_types", &self.features.reference_types)
            .field("wasm_bulk_memory", &self.features.bulk_memory)
            .field("wasm_simd", &self.features.simd)
            .field("wasm_multi_value", &self.features.multi_value)
            .field("wasm_module_linking", &self.features.module_linking)
            .field(
                "static_memory_maximum_size",
                &(u64::from(self.tunables.static_memory_bound)
                    * u64::from(wasmtime_environ::WASM_PAGE_SIZE)),
            )
            .field(
                "static_memory_guard_size",
                &self.tunables.static_memory_offset_guard_size,
            )
            .field(
                "dynamic_memory_guard_size",
                &self.tunables.dynamic_memory_offset_guard_size,
            )
            .field(
                "guard_before_linear_memory",
                &self.tunables.guard_before_linear_memory,
            )
            .field("parallel_compilation", &self.parallel_compilation);
        #[cfg(compiler)]
        {
            f.field("compiler", &self.compiler);
        }
        f.finish()
    }
}

/// Possible Compilation strategies for a wasm module.
///
/// This is used as an argument to the [`Config::strategy`] method.
#[non_exhaustive]
#[derive(Clone, Debug)]
pub enum Strategy {
    /// An indicator that the compilation strategy should be automatically
    /// selected.
    ///
    /// This is generally what you want for most projects and indicates that the
    /// `wasmtime` crate itself should make the decision about what the best
    /// code generator for a wasm module is.
    ///
    /// Currently this always defaults to Cranelift, but the default value may
    /// change over time.
    Auto,

    /// Currently the default backend, Cranelift aims to be a reasonably fast
    /// code generator which generates high quality machine code.
    Cranelift,
}

/// Possible optimization levels for the Cranelift codegen backend.
#[non_exhaustive]
#[derive(Clone, Debug, Serialize, Deserialize, Eq, PartialEq)]
pub enum OptLevel {
    /// No optimizations performed, minimizes compilation time by disabling most
    /// optimizations.
    None,
    /// Generates the fastest possible code, but may take longer.
    Speed,
    /// Similar to `speed`, but also performs transformations aimed at reducing
    /// code size.
    SpeedAndSize,
}

/// Select which profiling technique to support.
#[derive(Debug, Clone, Copy)]
pub enum ProfilingStrategy {
    /// No profiler support.
    None,

    /// Collect profiling info for "jitdump" file format, used with `perf` on
    /// Linux.
    JitDump,

    /// Collect profiling info using the "ittapi", used with `VTune` on Linux.
    VTune,
}

/// Select how wasm backtrace detailed information is handled.
#[derive(Debug, Clone, Copy)]
pub enum WasmBacktraceDetails {
    /// Support is unconditionally enabled and wasmtime will parse and read
    /// debug information.
    Enable,

    /// Support is disabled, and wasmtime will not parse debug information for
    /// backtrace details.
    Disable,

    /// Support for backtrace details is conditional on the
    /// `WASMTIME_BACKTRACE_DETAILS` environment variable.
    Environment,
}